Environmental Impact Assessment

Document Stage: Updated Number: 51077-003 August 2023

Maldives: Greater Malé Waste-to-Energy Project – Waste to Energy Plant (Part G)

Appendices

Prepared by the Ministry of Environment, Climate Change and Technology for the Ministry of Finance and the Asian Development Bank. This is an updated version of the draft originally posted in July 2020 available on https://www.adb.org/projects/documents/mld-51077-003-eia-2.

This updated environmental impact assessment report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the "terms of use" section on ADB's website.

In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.

Feb 24, 2023

Page 3 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 4 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives Feb 15, 2023
Date of Sample Received:	red 13, 2025
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 02: Ground Water – GW02
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Sample 02

Feb 24, 2023

Page 5 of 24

TEST RESULTS

	Sample 02				[1
No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.2	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	0.6	Max. 50	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	ND	5 - 750	1.0	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.1	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	6.7	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	48.5	Max. 1000	-	mS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	0.06	Max. 5.0	-	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	17872.5	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L]
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND	-	1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L]
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 6 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is Not satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 7 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received:	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 03: Ground Water – GW03
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Sample 03

Feb 24, 2023

Page 8 of 24

TEST RESULTS

	<u>Sample 05</u>		Df	T		
No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.4	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	0.5	Max. 50	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ -B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	2	5 - 750	-	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.1	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	8.3	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	13.5	Max. 1000	-	mS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	0.05	Max. 5.0	-	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	3885.3	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	_	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L	
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND		1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L]
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 9 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is Not satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 10 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received:	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 04: Ground Water – GW04
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Feb 24, 2023

Page 11 of 24

TEST RESULTS

	<u>Sample 04</u>		<u>iesi ke</u>	<u>SUL15</u>		
No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.4	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	0.5	Max. 50	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	2	5 - 750	-	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.1	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	7.6	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	18	Max. 1000	-	mS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	0.05	Max. 5.0	0.05	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	6605	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L	
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND	-	1.0	μg/L	
xv	Benzo(e)pyrene*	ND	-	1.0	μg/L	
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 12 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is Not satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 13 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received:	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 05: Ground Water – GW05
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Sample 05

Feb 24, 2023

Page 14 of 24

TEST RESULTS

	<u>Sample 05</u>				I	1
No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	5870	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	0.6	Max. 50	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	680	5 - 750	-	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.9	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	7.5	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	15.5	Max. 1000	-	mS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	0.05	Max. 5.0	-	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	5439.4	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L]
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND		1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L]
xvi	Indeno(1,2,3-cd) pyrene*	ND	_	1.0	μg/L	

Feb 24, 2023

Page 15 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is Not satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 16 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received:	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 06: Ground Water – GW06
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Feb 24, 2023

Page 17 of 24

TEST RESULTS

	<u>Sample 06</u>		<u>iesi ke</u>	<u>SUL15</u>		
No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.3	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	0.1	Max. 50	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	ND	5 - 750	1.0	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.1	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	6.8	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	1291	Max. 1000	-	μS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	ND	Max. 5.0	0.05	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	83.5	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L	
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND	-	1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L	
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 18 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is Not satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 19 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received.	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 07: Ground Water – GW07
	Date of Sample Collection: 02.10.2023
Sample Drawn By BVCPS	NO

Sample 07

Feb 24, 2023

Page 20 of 24

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.2	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	ND	Max. 50	0.05	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	ND	5 - 750	1.0	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	0.1	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	6.8	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	595	Max. 1000	-	μS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	ND	Max. 5.0	0.05	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	79.6	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L	
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND	-	1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L	
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 21 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 22 of 24

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd					
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives					
Date of Sample Received.	Feb 15, 2023					
Date of Testing Started:	Feb 15, 2023					
Date of Testing Completed:	Feb 22, 2023					
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle					
	Sample Identified by the Client as: Sample 08: Ground Water – GW08					
	Date of Sample Collection: 02.10.2023					
Sample Drawn By BVCPS	NO					

Sample 08

Feb 24, 2023

Page 23 of 24

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Turbidity	0.2	Max. 1	-	NTU	APHA 23rd ed: 2017 :2130 B
2	Nitrate (as NO ₃ ⁻)*	ND	Max. 50	0.05	mg/L	APHA 23rd ed: 2017: 4500 -NO ₃ - B
3	Iron (as Fe)	ND	Max. 0.3	0.001	mg/L	
4	Manganese (as Mn) *	ND	Max. 0.1	0.001	mg/L	
5	Arsenic (as As)	ND	Max. 0.01	0.001	mg/L	APHA 23rd ed: 2017: 3125 B
6	Cadmium (as Cd)	ND	Max. 0.003	0.0001	mg/L	(ICP-MS)
7	Lead (as Pb)	ND	Max. 0.01	0.001	mg/L	
8	Mercury (as Hg)	ND	Max. 0.001	0.00050	mg/L	
9	Total Suspended Solids (TSS)	ND	5 - 750	1.0	mg/L	APHA 23rd ed: 2017 : 2540D
10	Feacal Coliform	<1.8	0		MPN/100mL	APHA 23 rd Edition 9221 E
11	Oil & Grease	ND	-	-	mg/L	APHA 23rd ed: 2017: 5520B
12	pH at 25°C	6.8	6.5 - 8.5	-	-	APHA 23rd ed: 2017: 4500H+B
13	Electrical Conductivity at 25°C	580	Max. 1000	-	μS/cm	APHA 23rd ed: 2017: 2510 B
14	Total Phosphates (as PO ₄ ³⁻)	ND	Max. 5.0	0.05	mg/L	APHA 23rd ed: 2017: 4500-PC
15	Chloride (as Cl ⁻)	77.8	Max. 200	-	mg/L	APHA 23rd ed: 2017: 4500-Cl- B
16	Polycyclic Aromatic Hydrocarbo	ons (PAH)*				
i	Naphthalene*	ND	-	1.0	μg/L	
ii	Benzo(a)anthracene*	ND	-	1.0	μg/L	
iii	Acenaphthylene*	ND	-	1.0	μg/L	
iv	Acenaphthene*	ND	-	1.0	μg/L	
v	Fluorene*	ND	-	1.0	μg/L	
vi	Phenanthrene*	ND	-	1.0	μg/L	
vii	Pyrene*	ND	-	1.0	μg/L	
viii	Chrysene*	ND	-	1.0	μg/L	
ix	Benzo(b)fluoranthene*	ND	-	1.0	μg/L	CPSD-AN-00090
х	Benzo(k)fluoranthene*	ND	-	1.0	μg/L	
xi	Dibenzo(a,h)anthracene*	ND	-	1.0	μg/L	
xii	Benzo(g,h,i)perylene*	ND	-	1.0	μg/L	
xiii	Benzo(j)fluoranthene*	ND	-	1.0	μg/L	
xiv	Benzo(a)pyrene*	ND	-	1.0	μg/L	
XV	Benzo(e)pyrene*	ND	-	1.0	μg/L	
xvi	Indeno(1,2,3-cd) pyrene*	ND	-	1.0	μg/L	

Feb 24, 2023

Page 24 of 24

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius, MPN / 100mL- Most Probable Number per hundred milliliter, APHA <1.8 MPN/100mL=Not Detected/100mL ICP-MS- Inductively Coupled Plasma Mass Spectrometry

COMMENT : The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Contact information for this report (Technical and General Inquires and Feedback)GENERAL INQUIRIES:MOHOMED NAWZERTEL: +94 764 412 907E-MAIL: mohomed.nawzer@bureauveritas.comTECHNICAL INQUIRIES:RUWANI AMARASINGHETEL: +94 768 229 457E-MAIL: ruwani.amarasinghe@bureauveritas.comFEED BACK:KUMUDINI RATHNAYAKE – ASST. QA MANAGERTEL: +94 768 229 455E-MAIL: kumudinie.rathnayake@bureauveritas.comREVIEWED BY: HIMASHA JAYAWARDENA

BUREAU VERITAS CONSUMER PRODUCTS SERVICES LANKA (PVT) LTD. AUTHORIZED SIGNATORY

- N]

APPROVED BY:

RUWANI AMARASINGHE

ASSISTANT MANAGER -FOOD & MICROBIOLOGY LABORATORY

END OF THE REPORT

Feb 24, 2023

Page 1 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd						
Address : Date of Sample Received:	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives Feb 15, 2023						
•							
Date of Testing Started:	Feb 15, 2023						
Date of Testing Completed:	Feb 22, 2023						
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle Sample Identified by the Client as: Sample 01: Sea Water – SW01						
	-						

Date of Sample Collection: 02.10.2023

Sample Drawn By BVCPS NO

Photo of the Submitted Samples

Bureau Veritas Consumer Products Services Lanka (Pvt) Ltd.

No. 570, Galle Road, Katubedda, Moratuwa, Sri Lanka Tel: (9411) 2350111-115 (dedicated lines), Fax: (9411) 112622198 & 199 Email: <u>bvcps.lanka@lk.bureauveritas.com</u> This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of orm winter other trademark, is permitted only with our prior written permission. This report test forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of the report contents.

Sample 01

Feb 24, 2023

Page 2 of 15

TEST RESULTS

N .7			Reference			
No.	Parameters	Results	range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	11.6	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.3	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ -B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CF3D-AN-00381. 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	40	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	54.5	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 3 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received.	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 02: Sea Water – SW02
	Date of Sample Collection: 02.10.2023

Sample Drawn By BVCPS NO

Sample 02

Feb 24, 2023

Page 4 of 15

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	9.8	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.3	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ - B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CPSD-AN-00381: 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	38	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	54	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 5 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd				
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives				
Date of Sample Received:	Feb 15, 2023				
Date of Testing Started:	Feb 15, 2023				
Date of Testing Completed:	Feb 22, 2023				
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle				
	Sample Identified by the Client as: Sample 03: Sea Water – SW03				
	Date of Sample Collection: 02.10.2023				

Sample Drawn By BVCPS NO

Sample 03

Feb 24, 2023

Page 6 of 15

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	ND	Max.70	0.5	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.1	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ -B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CPSD-AN-00381: 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	3	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	ND	Max.20	1	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	57.2	Max. 2500	-	µS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	ND	Max.3	0.05	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 7 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd					
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives					
Date of Sample Received:	Feb 15, 2023					
Date of Testing Started:	Feb 15, 2023					
Date of Testing Completed:	Feb 22, 2023					
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle					
	Sample Identified by the Client as: Sample 04: Sea Water – SW04					
	Date of Sample Collection: 02.10.2023					

Sample Drawn By BVCPS NO

Sample 04

Feb 24, 2023

Page 8 of 15

TEST RESULTS

N .7			Reference			
No.	Parameters	Results	range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	11.6	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.3	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ - B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CF3D-AN-00381. 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	36	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	48.6	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 9 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd				
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives				
Date of Sample Received.	Feb 15, 2023				
Date of Testing Started:	Feb 15, 2023				
Date of Testing Completed:	Feb 22, 2023				
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle				
	A water sample contained in scaled plastic bottle				
	Sample Identified by the Client as: Sample 05: Sea Water – SW05				

Sample Drawn By BVCPS NO

Sample 05

Feb 24, 2023

Page 10 of 15

TEST RESULTS

No.	Parameters	Results	Reference	LOQ	Unit	Test Method
110.	1 al ameter s	Kesuits	range **	LUQ	Unit	i est wiethoù
1	Total Nitrogen (as N)*	10.4	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.4	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ - B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CF3D-AN-00381. 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	39	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	47.8	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Feb 24, 2023

Page 11 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd				
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives				
Date of Sample Received.	Feb 15, 2023				
Date of Testing Started:	Feb 15, 2023				
Date of Testing Completed:	Feb 22, 2023				
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle				
	Sample Identified by the Client as: Sample 06: Sea Water – SW06				

Sample Drawn By BVCPS NO

Sample 06

Feb 24, 2023

Page 12 of 15

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	11.8	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.3	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ - B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	CPSD-AN-00581: 2019 V15
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	38	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	48	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Report No: (7423)046-0113 Code Name: AAWTE Feb 24, 2023

Page 13 of 15

Customer:	Alke Alkatas Joint Venture (Pvt) Ltd
Address :	H.H. Moomiyaage, 5A, Asaree Hingun. 20265 Male, Republic of Maldives
Date of Sample Received.	Feb 15, 2023
Date of Testing Started:	Feb 15, 2023
Date of Testing Completed:	Feb 22, 2023
Sample Description:	Sample Received as: A water sample contained in sealed plastic bottle
	Sample Identified by the Client as: Sample 07: Sea Water – SW07
	Date of Sample Collection: 02.10.2023

Sample Drawn By BVCPS NO

Photo of the Submitted Samples

Report No: (7423)046-0113 Code Name: AAWTE

Sample 07

Feb 24, 2023

Page 14 of 15

TEST RESULTS

No.	Parameters	Results	Reference range **	LOQ	Unit	Test Method
1	Total Nitrogen (as N)*	10.9	Max.70	-	mg/L	APHA 23rd ed: 2017 - 4500-Norg B
2	Nitrite (as NO ₂ ⁻)*	0.4	Max.2	-	mg/L	APHA 23rd ed: 2017: 4500 -NO ₂ -B
3	Arsenic (as As)	ND	Max.0.1	0.001	mg/L	
4	Cadmium (as Cd)	ND	Max.0.05	0.0001	mg/L	
5	Lead (as Pb)	ND	Max.0.5	0.001	mg/L	
6	Total Chromium (as Cr)	ND	Max.0.5	0.001	mg/L	CPSD-AN-00581: 2019 V15
7	Mercury (as Hg)	ND	Max.0.02	0.00050	mg/L	CPSD-AN-00381: 2019 V13
8	Nickel (as Ni)	ND	Max.1	0.001	mg/L	
9	Zinc (as Zn)	ND	Max.2	0.001	mg/L	
10	Copper (as Cu)	ND	Max.0.5	0.001	mg/L	
11	Chemical Oxygen Demand (COD)	41	Max.200	-	mg/L	APHA 23rd ed: 2017 : 5220D
12	Biological Oxygen Demand (BOD5) @ 20°C	6	Max.20	-	mg/L	APHA 23rd ed: 2017 : 5210D
13	Hexavalent Chromium (as Cr ⁶⁺)*	ND	Max.0.1	0.05	mg/L	CPSD-AN-00582-MTHD
14	Electrical Conductivity at 25°C	56	Max. 2500	-	mS/cm	APHA 23rd ed: 2017: 2510 B
15	Total Phosphates (as PO ₄ ³⁻)	0.05	Max.3	-	mg/L	APHA 23rd ed: 2017: 4500-PC
16.	Sulfide	ND	Max.1	0.01	mg/L	APHA 23rd ed: 2017: 4500-S ²⁻ F

*Test not covered ISO 17025: 2017 by Sri Lanka Accreditation Board for conformity assessment. Reference range **as per Supply Water Quality Standard, Environment Protection Agency, Maldives

NOTE:

APHA: American Public Health Association, SLS: Sri Lanka Standard, ND: Not Detected, μS/cm: micro Siemens per centimeter LOQ: Limit of Quantification, mg/L: milligrams per liter, NTU: Nephelometric Turbidity Units, °C :Celcius,

COMMENT :The Testing Results revealed that Food hygiene of Tested Water Sample is satisfactory as per the Reference range **specified as per Supply Water Quality Standard, Environment Protection Agency EPA, Maldives.

Report No: (7423)046-0113 Code Name: AAWTE Feb 24, 2023

Page 15 of 15

Contact informa	ion for this report (Technical and General Inquiries and Feedback)
CENERAL INICIAIDIES.	

GENERAL INQUIRIES:		
MOHOMED NAWZER	TEL: +94 764 412 907	E-MAIL: mohomed.nawzer@bureauveritas.com
TECHNICAL INQUIRIES:		
RUWANI AMARASINGHE	TEL: +94 768 229 457	E-MAIL: ruwani.amarasinghe@bureauveritas.com
FEED BACK:		
KUMUDINI RATHNAYAKE – ASST. QA MANAGER	TEL: +94 768 229 455	E-MAIL: kumudinie.rathnayake@bureauveritas.com

REVIEWED BY: DILINI JAYASINGHE

BUREAU VERITAS CONSUMER PRODUCTS SERVICES LANKA (PVT) LTD. AUTHORIZED SIGNATORY

TN

APPROVED BY:

RUWANI AMARASINGHE

ASSISTANT MANAGER -FOOD & MICROBIOLOGY LABORATORY

END OF THE REPORT

MDV-AAK-CEMPX-XX-RP-XXX-0002-000

Environmental Monitoring Report - January 2023

		REPUBLIC O	F MALDIVES				
MI	MINISTRY of ENVIRONMENT, CLIMATE CHANGE and TECHNOLOGY						
DBO CONTRACTOR:		urbaser	RAMBOLL				
EMPLOYER				Review & Approval:			
REPRESANTATIVE							
	F	ICHTN	ER				
EPC CONTRACTOR:	Q	ALKE-ALKATAŞ	LKATAŞ				
Project Title:	Desig	n, Build and Operate Contract No: (A0	of a Waste to Energy I GR)438-WPMC/PRIV/	-			
Document Name:	Document Name: ENVIRONMENTAL MONTHLY REPORT JANUARY 2023						
Status:		Project Ma	anagement Deliverable	es			
Design:	Company:	Name:	Date:				
Prepared by:	AAJV	Binh, T.H	29.01.2023	Document No:			
Checked by:	AAJV	CIVAN KALAFAT	30.1.2023	MDV-AAK-CEMPX-XX-			
	URB/RAM	JMA/RLEE		RP- XXX-0002-000			
1							

January 2023

CONTENT

1.	ENVIRONMENTAL REPORTING	3
	1.1 Activities on site	3
2. 3.	1.2 Construction Material WASTE MANAGEMENT DOCUMENTATION	4 5
4.	TRAINING COURSES ON ENVIRONMENTAL SAFEGUARDS	7
5.	4.1 Training Plan for the Next Reporting Period ENVIRONMENTAL ACTIVITIES SUMMARY	
	5.1 Monitoring in the Pre-Construction Phase	8
	5.2 Weather Conditions in Measuring Day	8
6.	5.3 The Summary Weather Conditions of the Maldives Over the Year Key Monitoring Findings from the Reporting Period	
	6.1 Ambient/Air Monitoring Results	11
7.		19
	pendix 1. Waste collection agreement	
-	pendix 2. Sewage layout plan pendix 3. Disposal areas layout plan (WASTE STORAGE ARES IN YELLOW RECTANGULAR)	

LKATAS

1. ENVIRONMENTAL REPORTING

This report provides an overview of the monthly environmental monitoring program conducted at the waste-toenergy construction project site on Thilafushi Island. The focus of the monitoring program is to assess the impact of the construction activities on the surrounding environment, particularly with regards to air, noise and water quality. The monitoring program is carried out in accordance with relevant environmental regulations and guidelines to ensure the protection of the environment and the health and well-being of the local community. The results of the monitoring program are used to identify any potential environmental impacts and to implement appropriate corrective actions to minimize or mitigate these impacts.

This report provides detailed information on the monitoring results, including data on key environmental parameters, such as air and water quality parameters, and noise levels. The report also includes a summary of any significant findings and any corrective actions that have been taken.

We hope that this report will provide a useful source of information for stakeholders, including local residents, regulatory authorities, and other interested parties.

1.1 Activities on site

The environmental monitoring program was conducted at the waste-to-energy construction site during the reporting period. The monitoring activities focused on air, noise, and water quality and were performed by a combination of employed staff and subcontractors.

No environmental incidents or near misses were reported during the monitoring period, and all equipment was in good working condition and properly maintained. The monitoring data were collected and analyzed using established procedures, and the results provide a comprehensive assessment of the site's environmental conditions. The monitoring program is an important aspect of our commitment to protecting the environment and ensuring the health and well-being of the surrounding community.

Activity on site	Units	2022						2023
		Jul	Aug	Sep	Oct	Nov	Dec	Jan
Staff - employed	Nos	44	48	52	48	46	46	46
Staff - subcontractors	Nos	08	08	08	06	10	10	0
Excavator	Nos	01	01	01	00	00	01	01
Jcb	Nos	01	01	01	01	01	01	01
Car Mix	Nos	01	01	01	01	01	00	00
Diesel generators	Nos	03	03	03	03	03	03	03
Small mobile generators	Nos	02	02	02	02	01	02	02
Lightweight Equipment (i.e tower	Nos	01	01	01	01	01	4	6
lights, vibrators etc.)		each						
Pick up	Nos	02	02	02	02	02	00	00
Forklift	Nos	02	02	02	02	02	02	02
Environmental Incidents/Near Miss:	No of incidents	NIL						

Table 1: Activities at Site

January 2023

4/22

Construction Material 1.2

A wide range of construction materials are supplied to the waste-to-energy construction site to support the ongoing construction activities. These materials include stone of all types, sand of all types, concrete, steel, macadam, cement, pipe, wood, plastic, glass, electric wire, machine oil, gasoline, soils from weathered excavation, filling earth, and disposal waste.

The materials are stored and managed on-site in accordance with established procedures and regulations, to minimize the risk of any potential environmental impacts. The storage and handling of the materials is closely monitored, and appropriate measures are taken to prevent any spillage or leakage that could impact the surrounding environment.

It is important to note that all materials supplied to the site are sourced from reputable suppliers and are subject to rigorous quality control procedures to ensure that they meet the required standards for use in construction. These materials are also closely monitored to ensure that they are used in an environmentally responsible manner, and any waste materials generated during the construction activities are properly managed and disposed of in accordance with established procedures.

Construction materials	Unit	Quantity
Stone of all types	m ³	1000
Sand of all types	m ³	570000
Concrete	m ³	30000
Steel	ton	3600
Macadam	m²	
Cement	ton	12000
Pipe	pieces	
Wood	m ³	300
Plastic	Tone	-
Glass	m ²	-
Electric wire	m length	-
Machine oil	Litter	1000
Fuel (gasoline)	Litter	3000
Soils weathered excavation	m ³	30000
Filling earth	m ³	30000
Disposal waste	m ³	?

Table 2: Construction Materials

2. WASTE MANAGEMENT

The domestic and construction waste generated from the daily activities at the waste-to-energy construction site will be managed according to the Waste Management Procedure and Plan document, which is currently being reviewed.

As per the agreement between AAJV and WAMCO of Maldives dated January 29, 2023, the company will be responsible for the collection and classification of waste at the Thilafushi WTE project site in the Maldives, as outlined in Appendix 1. The location of disposal sites and sewage lines can be found in Appendices 2 and 3, respectively.

January 2023

3. DOCUMENTATION

To ensure the responsible and sustainable management of the waste-to-energy construction project in the Maldives, a comprehensive suite of environmental management documents have been developed and approved in line with the requirements set forth by the Asian Development Bank (ADB). These documents are key to ensuring that the project is managed in an environmentally responsible manner and that its impacts on the surrounding environment are minimized.

The environmental management documents include:

- The Waste Management System Plan outlines the procedures for managing and disposing of waste generated at the construction site.
- The Stakeholder Engagement Plan details the measures that will be taken to engage with and involve local stakeholders in the project.
- The Environmental Social Management Plan (ESMP) sets out the strategies and procedures for mitigating and managing the social and environmental impacts of the project.
- The Environmental Social Action Plan (ESAP) outlines the specific actions that will be taken to address any ٠ identified social and environmental issues.
- The Spill Control & Containment Plan outlines the measures that will be taken to prevent and respond to spills of hazardous materials at the construction site.
- The Chemicals & Hazardous Material Management Plan sets out the procedures for managing and disposing of chemicals and hazardous materials used at the construction site.
- The Public Health, Safety, and Security Plan, outlines the measures that will be taken to ensure the health, safety, and security of workers and the public.
- The Traffic Management Plan sets out the procedures for managing traffic and ensuring the safety of workers and the public during project construction.
- The Security Management Plan outlines the measures that will be taken to secure the construction site and protect workers and the public.
- The Standard Operating Procedures for GRM, outline the procedures for managing the day-to-day operations of the construction site.
- The Emergency Response Plan outlines the procedures for responding to and managing emergencies at the construction site.
- The ERP and Site Procedure Manual provides a comprehensive guide to the procedures and processes used at the construction site.
- The HIRA outlines the hazards and risks associated with the construction of the project and the measures that will be taken to manage them.
- The Marine and Beach Area Plan sets out the procedures for protecting and preserving the marine and beach areas in the vicinity of the construction site.

These environmental management documents form the foundation of the environmental management system for the waste-to-energy construction project and will be used to ensure that the project is managed in a responsible and sustainable manner, minimizing its impact on the environment and the surrounding community.

The following documents have been prepared, submitted reviewed and finalized:

ENVIRONMENTAL MONTHLY REPORT -

January 2023

Page No:

Table 3: Status of Documents

No.	Document name	Accepted date	Rejected date	Date of Re- submitted	Deadline of re- submission
1	Marine and Beach Area Plan- MDV-AAK- HSEXX-XX-PL-MGT-0014-000	7-Feb-23			
2	Public Health Safety and Security Plan- MDV-AAK-HSEXX-XX-PL-MGT-0017-001		7-Feb-23	10-Feb-2023	
3	Traffic Management Plan- MDV-AAK- HSEXX-XX-PL-MGT-0016-000		7-Feb-23	11-Feb-2023	
4	ERP and Site Procedure Manual= MDV- AAK-HSEXX-XX-PL-MGT-0015-001		7-Feb-23	10-Feb-2023	
5	Chemical and Hazardous Material Management plan- MDV-AAK-HSEXX-XX- PL-MGT-0012-000	7-Feb-23			14-Feb-2023
6	Stakeholder Engagement Plan- MDV- AAK-HSEXX-XX-PL-MGT-0011-000	7-Feb-23			14-Feb-2023
7	Security Management Plan-MDV-AAK- HSEXX-XX-PL-MGT-0013-000	7-Feb-23			
8	Spill Control and Containment Plan- MDV-AAK-HSEXX-XX-PL-MGT-0010-000		3-Feb-23	11-Feb-2023	
9	Waste management procedure and plan- MDV-AAK-HSEXX-XX-PL-MGT-0009-000	30-Jan-23		11-Feb-2023	
10	Environmental Social Action Plan (ESAP)= MDV-AAK-CEMPX-XX-PL-MGT-0008-000	30-Jan-23			
11	Hazard identification risk assessment- MDV-AAK-CEMPX-XX-PL-MGT-0007-000	4-Feb23			
12	SOP for Grievances Redness Mechanism- MDV-AAK-CEMPX-XX-PL-MGT-0006-001		22-Jan-23	11-Feb-2023	
13	Environmental Social Management Plan (ESMP)-MDV-AAK-CEMPX-XX-PL-MGT- 0005-001		15-Jan-23	10-Feb-2023	
14	Obligations register - environment impact & aspect register= MDV-AAK- CEMPX-XX-PL-MGT-0004-000				
15	Environmental Management & Impact Mitigation Plan- MDV-AAK-CEMPX-XX- PL-MGT-0009-000			10-Feb-2023 (new uploaded)	
16	Emergency Response Plan for environment				14-Feb-2023 (new uploaded)

The following internal training courses and training material documents related to environmental protection and safety have been developed for the project

The training course on Driving Safety Awareness focuses on educating participants on the importance of safe driving practices in the construction site of the Thilafushi WTE project in the Maldives. The course covers a range of topics, including identifying unsafe driving decisions, appropriate responses to unexpected driving circumstances, and methods to avoid risk and accidents. The aim is to provide participants with a thorough understanding of the steps they can take to ensure the safe operation of vehicles on the construction site. Additionally, the course covers vehicle maintenance and upkeep to ensure that vehicles are in good condition and ready to operate safely.

The Spillage Response course is designed to create awareness among workers and staff on the construction site about the Maldives Government and EPA regulations, Environmental Impact Assessment (EIA), and Construction Environmental Management Plan (CEMP) related to spillage response and the impact of hazardous chemicals and materials on their health. The course covers the responsibilities and strategies for preventing spills, assessing the hazards presented by spills, reporting spills when necessary, and cleaning up spills when appropriate. This training aims to ensure that participants are well-informed about the measures they can take to prevent and respond to spills in a safe and effective manner.

The Awareness of Noise and Record course aims to provide participants with an appreciation of the nature of noise hazards in the workplace and their impact on human health and well-being. The course covers the understanding of conducting noise assessments in the workplace and general environment to determine the need for compliance with relevant standards. Participants will learn about the consequences of excessive noise exposure and the need for control measures, including personal protective equipment. The course also covers the measurement (including dosimetry) of noise in relation to current standards and the means of controlling noise levels in the workplace. The AAJV environmental management responses to the training.

Three training courses have been done in January 2023, are as follows

		•		-		
	Training program	Location	Day	Time	Participant	Status
1	Spill Response, Clean-Up, and Emergency Response	At Thilafushi office	Jan 7, 2023	9.00-10.0 AM	All worker and staffs, officers	Done
2	Awareness training for noise/records	At Thilafushi office	Jan 10, 2023	9.00-10.0 AM	All worker and staffs, officers	Done
3	Driving safety in construction areas training course	At Thilafushi office	Jan 12, 2023	9.00-10.0 AM	All Drivers in site	Done

Table 2. Training courses program in January 2023

4.1 Training Plan for the Next Reporting Period

To ensure that new employees are equipped with the necessary knowledge and skills to work safely and responsibly, several training courses will be held in March 2023. These courses, including Spill Response, Clean-Up, Emergency Response, and Awareness of Noise/Records, will take place at the Thilafushi construction site of the Thilafushi WTE project in the Maldives.

The Spill Response training will aim to raise awareness among workers and staff about the regulations of the Maldives Government & EPA, EIA, and CEMP related to spill response, as well as the impacts of hazardous chemicals and materials on their health. This course will also provide information on the responsibilities and strategies for preventing spills, assessing hazards presented by spills, reporting spills when necessary, and cleaning up spills when appropriate.

The Clean-Up training will focus on the proper procedures for cleaning up spills and managing hazardous materials. Participants will learn how to properly contain spills, dispose of contaminated materials, and minimize the environmental impact of spills.

The Emergency Response training will cover procedures for responding to emergencies on the construction site, including fires, spills, and other hazardous events. Participants will learn how to quickly and effectively respond to emergency situations to minimize harm to people and the environment.

The Awareness for Noise/Records training aims to provide participants with an understanding of the nature of noise hazards in the workplace and their effects on people. The course will also cover conducting noise assessments in the workplace and the general environment, determining compliance requirements, and controlling noise exposure, including the use of personal protective equipment.

Overall, the training sessions are an essential part of the project's environmental management, ensuring that new employees and workers are well-equipped to work safely and responsibly at the construction site. The Awareness for Noise/Records training will take place on March 16, 2023, while Spill Response, Clean-Up, and Emergency Response training will be conducted on March 17, 2023.

5. ENVIRONMENTAL ACTIVITIES SUMMARY

5.1 Monitoring in the Pre-Construction Phase

To ensure that the environmental impact of the waste-to-energy (WtE) facility at Thilafushi, Maldives is wellmonitored, a monitoring schedule has been proposed and followed. As per the schedule, the first round of environmental monitoring was carried out in January 2023. This report is part of the pre-construction and construction stage monitoring, which is a contractual requirement outlined in the Environmental Impact Assessment report for the project. The purpose of the monitoring is to assess the environmental impact of the WtE facility on its surroundings.

The environmental monitoring conducted in January focused on two main aspects: ambient air quality, noise levels. The ambient air monitoring was conducted from January 28th to January 30th, 2023, at various approved locations, using AirQoon Sensor equipment. Similarly, the noise level monitoring was conducted on January 26th and January 27th, 2023, at five locations, using a T-958 Professional Sound Level Meter device. The results of these environmental monitoring activities will help ensure that the WtE facility operates within the acceptable environmental standards and regulations set by the Maldives Government and the Environmental Protection Agency (EPA).

5.2 Weather Conditions in Measuring Day

When conducting noise level and ambient air quality monitoring, several key considerations need to be taken into account to ensure accurate and reliable results.

For noise level monitoring, it is essential to consider the time of day when monitoring is conducted, as noise levels can vary significantly depending on the level of activity in the surrounding area. The type of environment being monitored, such as a busy construction site or a residential area, should also be considered, as this can impact the type of equipment used for monitoring and the locations of the monitoring points. The type of equipment used for noise level monitoring is also critical, as different types of meters can produce different results. In this case, the T-958 Professional Sound Level Meter was used, which is a reliable and accurate tool for monitoring noise levels.

When conducting ambient air quality monitoring, it is also important to consider the time of day and the weather conditions on the day of monitoring. Changes in wind speed, humidity, and other weather conditions can affect air quality, and the locations of the monitoring points should also be considered, as different locations can produce different results due to factors such as local traffic patterns and the presence of nearby industrial sources. In this case, the monitoring was conducted over a period of three days, with the AirQoon Sensor being used to monitor air quality at eight approved locations.

By taking these key considerations into account, the results of the noise level and ambient air quality monitoring conducted in January 2023 can be relied upon to provide an accurate and meaningful representation of the environmental conditions in the area surrounding the project.

			-	-	-	
Date	Time	Atmospheric temperature in °F	Atmospheric pressure	Wind speed	Wind direction	Air Humid %
			in Hg	mph		
26 Jan 2023	Night	+79°	29.8	9.4	North East	84
	Morning	+81°	29.8	10.5	East	77
	Day	+84°	29.8	11.4	East	74
	Evening	+82°	29.8	11.2	East	69
27 Jan 2023	Night	+81	29.8	12.3	East	77
	Morning	+81	29.8	11.4	North East	84
	Day	+86	29.8	11.4	North East	72
	Evening	+82	29.8	11.6	North East	75
28 Jan 2023	Night	+82	29.8	11.6	North East	78
	Morning	+82	29.8	10.7	North East	80
	Day	+86	29.8	12.1	North East	75
	Evening	+82	29.8	13	North East	74
29 Jan 2023	Night	+81	29.8	9.6	North East	74
	Morning	+84	29.8	7.6	North	85
	Day	+84	29.7	11.4	North East	83
	Evening	+81	29.8	8.3	East	78
30 Jan 2023	Night	+81	29.8	8.1	North East	70
	Morning	+86	29.9	8.7	North East	77
	Day	+84	29.9	9.2	North	71
	Evening	+81	29.9	7.8	North East	77

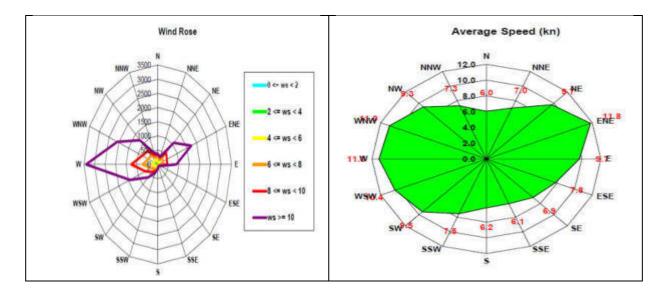
 Table 4: Weather Conditions During the Monitoring Days

5.3 The Summary Weather Conditions of the Maldives Over the Year

The Maldives are a group of tropical islands located in the Indian Ocean to the southwest of India. Known for their hot and humid climate, the Maldives experience two monsoons throughout the year that influence their weather conditions. The southwest monsoon, from April to September, is stronger in the northern islands and is accompanied by rough sea conditions, high humidity, and frequent cloudiness. The northeast monsoon, from October to December, brings showers and thunderstorms, especially in the southern atolls.

alke

LKATAS


Between the monsoons, the driest period occurs from January to April, particularly in the northern atolls. The temperatures are consistent year-round, with a relative humidity of 80%. During the period of March to May, there is a slight increase in temperature, especially in the northern atolls, with maximum temperatures reaching 32-33 °C (90-91 °F) and minimum temperatures of 26-27 °C (79-81 °F).

In tropical areas like the Maldives, rainfall typically occurs in short, intense downpours or thunderstorms. The southern atolls experience slightly more rainfall, with an annual average of 2,200-2,300 millimeters (87-91 inches), while the north experiences an average of 1,700-1,800 millimeters (67-71 inches) per year due to a relatively dry season from January to mid-April. This dry season is more pronounced in the northernmost atolls.

- **Wind**: The prevailing wind over the Maldives follows the typical Asian monsoonal characteristics, with seasonal reversals of wind direction by more than 120° between January and July. Throughout the year, westerly winds are predominant in the country, varying between west-southwest and west-northwest.

The southwest monsoon, which lasts from May to October, brings winds predominantly between SW and NW. From May to June, winds are mainly from WSW to WNW, and from July to October, winds between W and NW predominate. On the other hand, the northeast monsoon, which lasts from December to February, brings winds predominantly from NE to E. Winds are variable in March and April.

November is a transitional month, with winds primarily from the west, becoming variable and occasionally exceeding 30 knots from the NE sector. However, yearly wind speeds during the northeast and southwest monsoons are observed to be between 9-13 knots.

ENVIRONMENTAL MONTHLY REPORT -

January 2023

Page No:

Distribution of wind directions

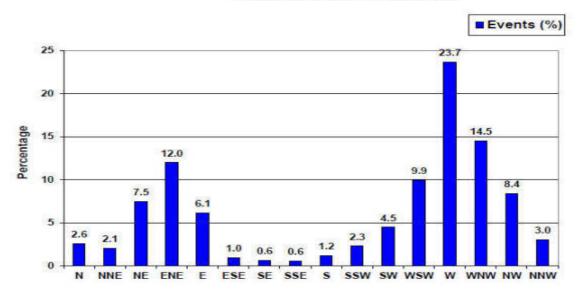


Figure 1: Spatial distribution of wind speed and directions (Source: MEE)

With respect to maximum wind speeds, visual inspection of the wind rose plot coincides with that of the mean wind speeds. Approximately 3% of the time, wind speeds had gone as high as > 40 knots in this region. The highest recorded maximum wind speed for the region during the data collection period was 62 knots. The most common maximum wind speed is between 10-20 knots. Wind rose plots for both maximum and mean wind speeds show that winds from the West are dominant (21.3% of the time).

6. Key Monitoring Findings from the Reporting Period

Ambient/Air Monitoring Results 6.1

The pre-construction environmental monitoring of ambient air quality was conducted in January 2023 at seven different locations, six of which were located at Thilafushi, and one at Villingili. During the monitoring period, which took place from January 28th to January 30th, 2023, various air quality parameters were monitored using air quality monitoring stations equipped with sensor technology. The parameters that were monitored included PM10, PM2.5, SO2, NO2, and O3. In order to measure the Total Suspended Particles (TSPs), dust sampling devices that conform to international HSE-MDHS 14/3 were used. As recommended in the Environmental Impact Assessment (EIA) report, air quality was measured for 24 hours at each station to ensure a thorough evaluation of the air quality in the area. The locations for air quality monitoring were selected based on the findings of the EIA, and ASR 2, ASR 3, and ASR 5 were recommended for monitoring in the EIA report.

Rev. No/Date 00/30.1.2023 11/22

Table 5: Sampling Locations Pre-construction Ambient Air Quality Monitoring

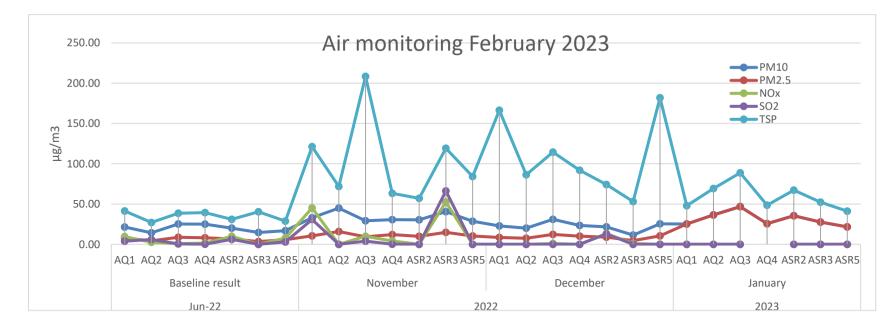
The approved Environmental Impact Assessment (EIA) document has identified and described the air quality monitoring locations. There are five designated air monitoring stations. These locations are further presented in the table below.

AQ1	Represents a dense industrial area. The distance from the project area to the stations is 650m, and the location is located directly to the working area of Ship and vessel repair and maintenance
AQ2	Represents dense industrial area. The distance from the project area to the stations is 1000m and the location is located directly to the working area of Ship and vessel repair and maintenance
AQ3	Represents dense industrial area, the distance from the project area to the stations is 500m, and the location is located directly to the working area of Ship and vessel repair and maintenance
AQ4	Represents dense housing and population area, the distance from the project area to the stations is 4500m
ARS2	Represents a dense industrial area, the distance from the project area to the stations is 700m, the location is located directly to the working area of Ship and vessel repair and maintenance
ARS3	Represents dense industrial area, the distance from the project area to the stations is 500m the location is located directly to the working area of Ship, vehicle and vessel repair and maintenance
ARS5	Represents dense industrial area, , the distance from the project area to the stations is 1000m, the location is located directly to the working area of Ship, vehicle and vessel repair and maintenance

Table 6: Brief Description of Air Quality Monitoring Stations

ENVIRONMENTAL MONTHLY REPORT -

a


LKATAS

January 2023

 Rev. No/Date
 00/30.1.2023

 Page No:
 13/22

2022											2023						Standard				
		Ν	ovembe	r					D	ecembe	r			January						value (WHO)	
AQ1	AQ2	AQ3	AQ4	ASR2	ASR3	ASR5	AQ1	AQ2	AQ3	AQ4	ASR2	ASR3	ASR5	AQ1	AQ2	AQ3	AQ4	ASR2	ASR3	ASR5	(WHO)
33.06	44.87	29.23	30.67	30.45	40.55	28.59	22.87	20.00	31.06	23.47	21.55	11.41	25.47	25.28	36.6	46.84	25.59	35.54	27.61	21.68	50 µg/m ³
10.52	15.85	9.25	12.06	9.83	14.84	10.19	8.41	7.55	12.28	10.10	8.95	4.44	10.42	<mark>25.13</mark>	<mark>36.45</mark>	<mark>46.64</mark>	<mark>25.56</mark>	<mark>35.46</mark>	<mark>27.57</mark>	21.66	25 µg/m ³
45.18	0	9.85	4.03	0	52.53	0	0	0	0.86	0	13.35	0.86	0	0	0	0		0	0	0	200 µg/m3
30.78	0	3.81	0.08	0	66.25	0	0	0	0	0	12.83	0	0	0	0	0		0	0	0	20 µg/m3
121.14	71.75	208.34	63.2	57.08	119.13	84.21	166.41	86.40	114.36	91.96	74.10	53.16	181.96	47.82	69.28	88.65	48.49	67.31	52.31	41.08	-

According the result from table 5 and the graphic, the ambient air quality results obtained from the preconstruction monitoring in January 2023 the background air quality values mostly comply with air quality standards.

Deviations from the baseline could be explained through a combination of the following factors, that are not necessarily related to the project activities.

- **Industrial and commercial activities**: Industries and businesses that emit pollutants such as chemicals, fumes, and dust can contribute to poor air quality.
- **Transportation**: The emission of pollutants from vehicles such as cars, trucks, and buses can also contribute to poor air quality.
- Weather conditions: Weather conditions like temperature inversions, which trap pollutants close to the ground, can contribute to poor air quality.
- **Population growth**: As populations grow in the island, the emission of pollutants from factories and human activities increases, leading to poor air quality.

Industrial and commercial activities, transportation, and population growth are more likely to be dependent on the monitoring location as they are directly influenced by human activities and the level of development of a particular area. Weather conditions and natural sources can affect air quality in a specific location, but their impact may not be as directly linked to the monitoring location as the other three factors.

For this reason, it is also important to look at differences between the monitoring locations, to ascertain whether the deviations are because of the monitoring regime, affected by the project activities and/or factors outside of the project area. Comparing air quality monitoring data over time provides several key benefits:

- **Identifying Trends**: Monitoring air quality over a period of time can reveal trends and patterns that may not be noticeable in isolated data points. This information can help to identify sources of pollution and prioritize mitigation efforts.
- Evaluating the Effectiveness of Mitigation Efforts: Comparing air quality data over time can show the impact of mitigation efforts, such as reducing emissions from industrial sources or implementing a clean-air policy.
- Identifying Seasonal Variations: Some air pollutants such as toxic gas, dust, high particles (Pm10, PM2.5) concentration, etc., can vary seasonally, and comparing air quality data over time can reveal these patterns and help to understand the impact of weather on air quality.
- **Compliance Monitoring**: Comparing air quality data over time can help determine if a location is meeting air quality standards and regulations.
- **Supporting Research**: Comparing air quality data over time can support scientific research and provide important information for understanding the long-term effects of air pollution on human health and the environment.

Overall, comparing air quality monitoring data over time is an important tool for understanding and addressing air pollution and ensuring that communities have safe and healthy air to breathe.

Single data points from air quality monitoring are just snapshots of air quality conditions at a specific moment in time. They can provide information about the current state of air quality, but it is not possible to determine the

cause of any changes in air quality based on just one data point. To determine the cause and effect of changes in air quality, it is necessary to examine the data over a longer period of time and look for patterns and trends. Factors such as weather conditions, seasonal changes, and human activities can all have an impact on air quality, and it is important to consider these factors and their interactions when analyzing air quality data over time. Additionally, it is also important to examine other data sources such as emissions data, meteorological data, and land use data to gain a more comprehensive understanding of the factors affecting air quality. By analyzing data over time and considering multiple data sources, it is possible to identify the causes and effects of changes in air quality and develop strategies for improving air quality.

6.2 Noise Monitoring Findings

The purpose of conducting repeated ambient noise level measurements at five locations in the pre-construction phase of the Thilafushi Waste to Energy facility is to assess the noise impact of the facility on its surrounding environment. These measurements are performed using a handheld sound level meter, specifically the ET-958 Professional Sound Level Meter, to ensure accurate and consistent results. The methodology for conducting these noise level measurements is still under review, but the intention is to establish a comprehensive and consistent approach for all future noise monitoring efforts at the facility.

The measurements for this reporting period were conducted over a 24-hour period on the 26th and 27th of January 2023, to capture both daytime and nighttime noise levels. This was done to account for any differences in noise levels that may occur due to changes in human activities and other sources of noise during different times of the day. The results of these measurements were recorded and analyzed to determine the baseline noise levels in the surrounding environment and assess the waste-to-energy facility's potential impact on the community.

Station name	Geographic Coordinates	Reason for selection
NQ1	4°10′26.4 N, 73°28′59.9 E	Included in the original EIA
NQ2	4°10′56.6 N, 73°26′53.3 E	Included in the original EIA
NQ3	4°10′58.3 N, 73°26′09.6 E	Included in the original EIA
NQ4	4°10′57.3 N,73°25′59.4 E	Included in the original EIA
NQ5	4°10′57.3 N, 73°26′14.4 E	Included in the original EIA

Table 8: Locations Selected for Ambient Noise Level Measurements

Table 9: Brief Description of Noise Monitoring Locations

NQ1	The station was selected as it represents a major industrial location of the island and is also located close to the harbor. The location lies north of the proposed facility on the opposite side of the lagoon.
NQ2	The station was selected as it represents a major industrial location of the island. The location lies east of the proposed facility on the opposite side of the lagoon. The location has various industrial activities in its proximity
NQ3	This station was selected as it is located near the boundary of the proposed WTE facility.
NQ4	This station was selected as it is located west of proposed WTE facility. The area has less development and less activity during the day time.
NQ5	This station was selected as it is located at the proposed WTE facility.

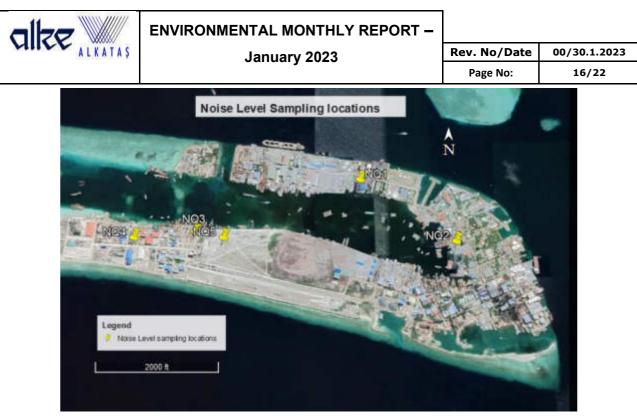


Figure 2: Ambient Noise Level Sampling Locations

	ENVIRONMENTAL MONTHLY REPORT -		
ALKATAS	January 2023	Rev. No/Date	00/30.1.2023
	······································	Page No:	17/22

Table 8.	Noise monitoring	result in	January	/ 2023
1 4010 0.		, 100uit iii	oundury	2020

Parameter										Month	/years										Standar	d value
			2019							2022								2023			(WHO)-(dBA
		Ba	aseline re	sult			l	Novembe	r			l	Decembe	er				January			Day	Night
	NQ1	NQ2	NQ3	NQ4	NQ5	NQ1	NQ2	NQ3	NQ4	NQ5	NQ1	NQ2	NQ3	NQ4	NQ5	NQ1	NQ2	NQ3	NQ4	NQ5	time	time
Day time	65.1	64.2	53.66	53.4	54.6	59	43.59	39.22	46.89	40.75	57.6	54.3	56.7	44.3	38.2	61.9	55.2	52.4	53.8	51.4	-	70
Night time	58.7	51.8	50.14	48.38	49	36.87	23.24	20.17	24.28	31.52	50.9	51.78	54.43	53.16	50.04	55.6	50.5	54	56.1	44.3		/0

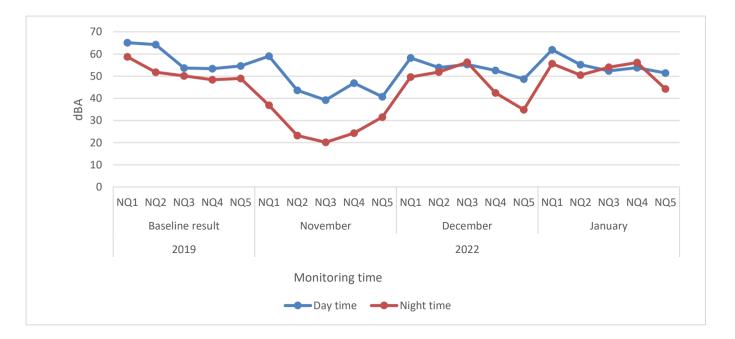


Figure 3: Noise monitoring diagram January 2023

To comprehensively understand the ambient noise levels in the vicinity of the Thilafushi Waste to Energy facility, 7-8 readings were taken every hour for 30-50 seconds at each monitoring station. These readings were then averaged to determine the average ambient noise level, which was recorded in dB(A). The results were summarized in Table 8 and depicted in Figure 3, providing a comprehensive overview of the ambient noise levels in the area. This data enabled further analysis and evaluation of the facility's potential impact on the surrounding environment. It is important to note that the monitoring was carried out during two different time periods:

- Dayy time (07.00 AM 22.00 PM)
- Night time (22.00 PM 07.00 AM, possibly the next day).

It is worth mentioning that there are currently no specific national standards for ambient noise levels in outdoor industrial areas in the Maldives. However, the measurements taken in Thilafushi island and the subproject area were compared to noise level standards specified by the World Health Organization (WHO) and the Asian Development Bank (ADB) for outdoor industrial and commercial areas. The results showed that all of the monitored locations had ambient noise levels below the threshold levels set by the WHO standards, indicating that the ambient noise levels in the area are considered safe according to WHO's criteria for outdoor industrial and commercial areas.

It is important to consider that several factors can lead to differences in noise levels between a baseline measurement and a subsequent measurement. Some of the most likely explanations for noise levels being beyond acceptable standards or differing from a baseline measurement include... (the rest of the paragraph is missing).

There could be several factors that can lead to differences in noise levels between a baseline measurement and a subsequent measurement. Some of the key most likely explanations for noise levels being beyond acceptable standards or differing from a baseline measurement include:

- Increase in traffic volume or industrial activities: An increase in the volume of vehicles or industrial activities in the area can result in an increase in noise levels.
- The difference in weather conditions: Weather conditions such as wind speed and direction can affect noise levels by carrying sounds further or reducing their impact.
- The difference in time of day: Noise levels can vary depending on the time of day. For example, noise levels may be higher during the day when there is more activity compared to nighttime.
- The difference in location of the source of noise: If the source of noise has moved, it can result in different noise levels at a particular location.
- Change in measurement equipment or methodology: If the measurement equipment or methodology has changed, it can result in different noise level readings compared to a baseline measurement.
- New construction or demolition activities: new construction or demolition activities can result in an increase in noise levels.

These are some reasons why noise levels are higher at nighttime compared to daytime. Some of the reasons could be:

• Increased human activity: People tend to be more active during nighttime, and construction work could increase noise levels.

19/22

- Traffic: There could be an increase in the number of vehicles in the area at nighttime, leading to increased noise levels.
- Industrial activities: Some industries may operate 24/7, increasing noise levels during nighttime.
- Echoes and reflections: At nighttime, there are often fewer people and objects to absorb sound, so noise • can travel farther and be amplified by echoes and reflections.

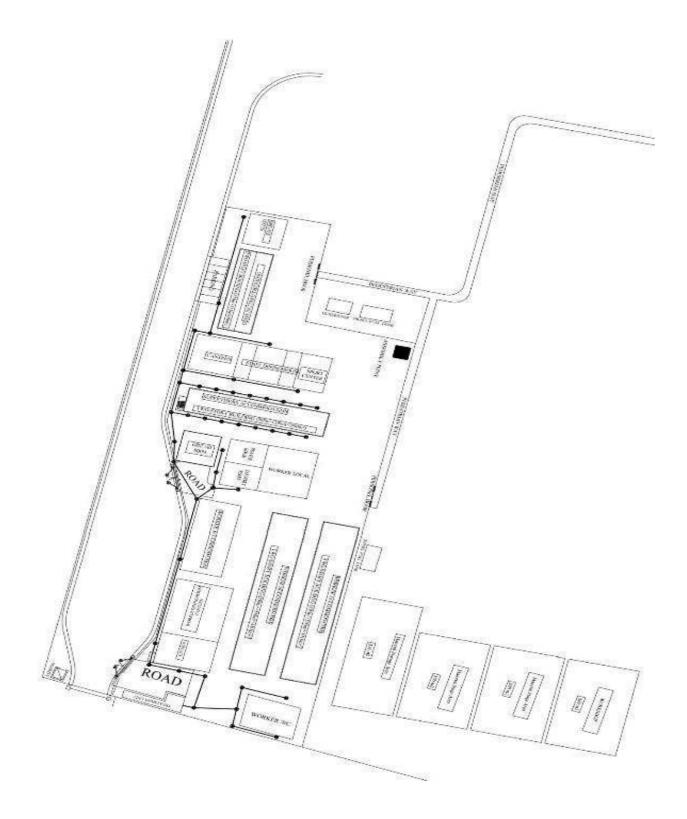
It is important to consider these factors when interpreting changes in noise levels over time

7. Picture demonstrate to physical environment monitoring in Pre-construction phase

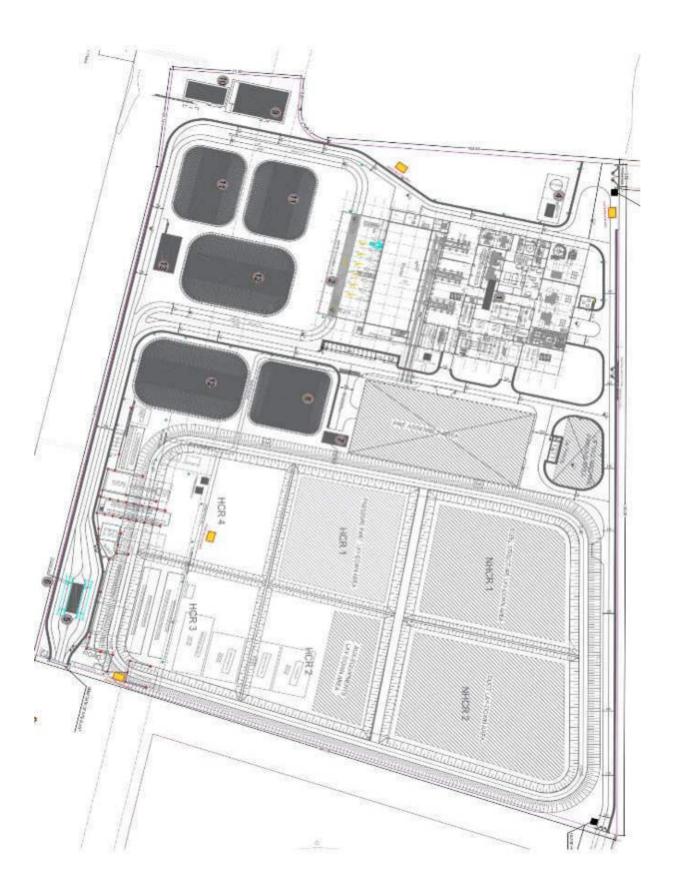
1. Ambient Air monitoring

Ambient Air monitoring at AQ 2

Ambient Air monitoring at AQ 3


January 2023

Appendix 1. Waste collection agreement


Waste Disposal Form Request Date 29 /01 / 2023 DETAILS OF PARTY REQUESTING FOR SERVICE Dut. Ltd. Alke Alkatas Joint Venture Name of Individual / Company / Resolt / IslandDepartment Hingun K. male-20265 H.H. mooniyage 50 Acare Add/ess borners butak. Ozdaniz@ aawte-cross Telephone Number and Fax Number DETAILS OF VESSEL/ VEHICLE ACI ATI 612 Registry Number Pickup Name of Vessel7 Vehicle Mehad National ID Card Number Name of Captain/ Driver 1.51m Tomage Length of the Vessel / Vehicle 9114593 Telephone Number and Fax Number Name of Company Location of WAMCO Vicima).4 Huthamale Industrial Village/Malé K. Thilafuahi S.Hulhumeedboo 5.Hithadhod R. Vandhoo Funational an HDh. Kuthudhuffushi PARTICULARS OF WASTE (SEGREGATED) Www. Glass Plastic Green Watte 060 Clectronic Waite -ELV Paper/Carchoard Citier _ "Call: Existences are Densities walk "Exercised of LPA Note 1. The functioning waite toping are not accepted at the facility at impactions Community Waiter By Unaud to versi locate severage and report weater Note 2: Preservers the regimal avery write a repy of the same with the beat rapition or threat AUTHORIZED PERSONNEL OF BEQUESTING PARTY FNOL REILON Telept Si DURECTO MANAGINI 6 C027 Designation Payment basis: C cash C credit ----Signat "Any otherations on the item will not be accepted -- To be filled by official of Waste Management Corporat Date Received Time Received Name Signature and Scamp Sales Riceigt / Estimate Number "Waste manifest form with guideline must be attached with this form.

Appendix 2. Sewage layout plan

Appendix 3. Disposal areas layout plan (WASTE STORAGE ARES IN YELLOW RECTANGULAR)

GOVERNMENT of MALDIVES

WtE Energy Facility Project

BACKGROUND AIR QUALITY MEASUREMENT REPORT

Thilafushi Island/MALDIVES

MALDIVES 2023

AIRS Air Quality Management Services Ltd Mustafa Kemal Mah. Via Green Is Mrk. B-36 Cankaya Ankara TURKEY Tel: +90 312 221 02 45 Fax: +90 312 221 02 45 www.airsaqms.com

Test Report

Customer Name/Address	Alke Alkatas Joint Venture Pvt Ltd H.H.Moomiyaage 5A Asaree Hingun K.Male 20265 MALDIVES					
Order No.	EN-M/2207/417_01					
Name and identity of test item	Immission (Air Quality)					
Remarks	•					
Date of Test	28.01.2023-01.02.2023					
Number of Pages of the Report	27 Pages					
Test Method	Air Quality Sensors					
Test results	The test results are given in the measurement result tables.					
Enviromental conditions	Environmental conditions during the measurement are given in the measurement result tables.					
Comments	-					

The test and/or measurement results, the uncertainties (if applicable) with confidence probability and test methods are given on the following pages which are part of this report.

Reporter and Approval Ismail Ulusoy Environmental Engineer

TABLE OF CONTENTS

1. INTRODUCTION	6
2. MEASUREMENT METHODS	6
2.1. FIELD APPLICATION	9
3. MEASUREMENT LOCATION	10
4. LEGAL FRAMEWORK	12
5. RESULTS	13
6. ASSESSMENT	27

LIST OF TABLES

Table 1 Calibration Process for Pollutants	7
Table 2 Sampling Point Coordinates and Sampling dates	10
Table 3. Limit Values Stipulated in the International Legislation	12
Table 4 Measurement Results for Location 1	13
Table 5 Measurement Results for Location 2	15
Table 6 Measurement Results for Location 3	17
Table 7 Measurement Results for Location 4	19
Table 8 Measurement Results for Location 5	21
Table 9 Measurement Results for Location 6	23
Table 10 Measurement Results for Location 7	25

LIST OF FIGURES

Figure 1 Sampling Points on satellite Map	11
Figure 2 Measurement Graphs for Location AQ1	14
Figure 3 Measurement Graphs for Location AQ2	16
Figure 4 Measurement Graphs for Location AQ3	18
Figure 5 Measurement Graphs for Location ASR2	20
Figure 6 Measurement Graphs for Location ASR3	22
Figure 7 Measurement Graphs for Location ASR2	24
Figure 8 Measurement Graphs for Location AQ4	

1. INTRODUCTION

This report has been prepared with the aim of determining the air quality in the sensitive receptors located in the impact area of the The Greater Malé Waste to Energy Project. Air quality results were determined for PM₁₀, PM_{2.5}, NO₂, SO₂ and TSP parameters.

2. MEASUREMENT METHODS

PM₁₀, PM_{2.5}, TSP, SO₂, and NO₂ parameters were monitored by using air quality monitoring stations based on sensor technology. The US EPA refers to the term 'air sensor' as a class of non-regulatory technology that is low-cost, portable, capable of measuring several pollutants simultaneously, and often easier to operate than regulatory stations. For example, monitoring air pollution with reference measurement methods (regulatory stations) requires skilled operators to maintain and calibrate measuring instruments. On the other hand, air sensors describe the hardware and software set that can be operated without human intervention and enable unskilled users to monitor air pollution without additional technical knowledge.

SO2	Sensitivity Range	nA/ppm at 2ppm SO ₂	275 to 520
-	Range		
Ī		ppm limit of performance warranty	100
	Linearity	error at 100ppm SO2, linear at zero and 10ppm SO2	0 to -2
NO2	Sensitivity	nA/ppm at 2ppm NO ₂	-200 to -650
Ī	Range	ppm NO2 limit of performance warranty	20
-	Linearity	ppb error at full scale, linear at zero and 20ppm	
Particles (PM10, PM2.5 and	Mass concentration	%	5
TSP)	precision		
	Mass concentration range	µg/m³	0 to 1000
Temperature	Typ. temperature accuracy	⁰ C	0.45
	Operating temperature	⁰ C	-10 to 50
	range		
	Response time (τ63%)	s	<60
Humidity	Typ. relative humidity	%RH	4.5
	accuracy		
	Operating relative	%RH	0 to 100
	humidity range		
	Response time (\u03c663%)	S	20
All	Temperature Range	⁰ C	-30 to 50
Ī	Humidity Range	% RH	5 to 99

Sensor specifications which are used for measurement study are shown below.

The accuracy of these low-cost sensors is as critical as measuring the air quality. With the smart calibration process, low-cost sensors are corrected and accurate compared to reference stations. The Smart Calibration Algorithm consists of the below operational steps shown figure below.

1.

air Onli Priggendian ai anta an priggent ning to the treats of memory water tero-Pollutant Test Inits are tested in zeroin conduction telline so investors Co-incution

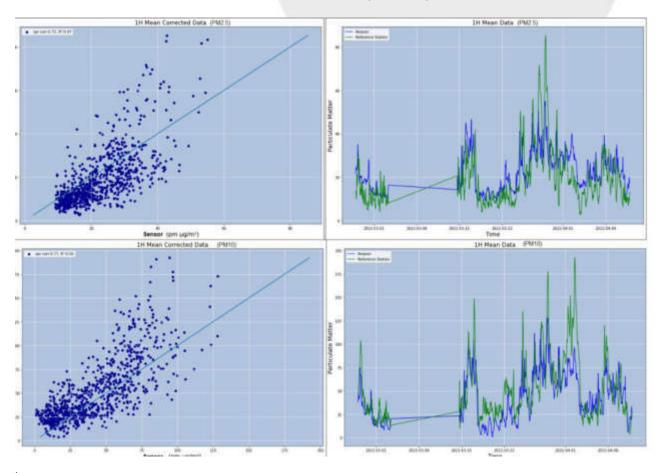
played on a attor for 1

with measurements are gyregated in the cloud 5 build a calibration rodol. A Parameter Set ibration parameters set over the air for or individual second

5.

Field Deployme Calibrated units deployed accord

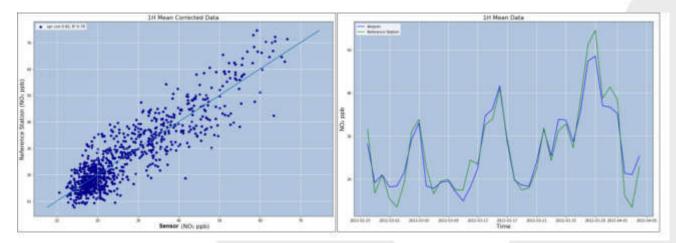
6.


Sensor Units were calibrated using reference stations for a period before the deployment. The calibration process for particle matter and gas pollutants measurement is explained below.

Description	Methodology		
Description	NO ₂ -SO ₂ -O ₃	PM ₁₀ -PM _{2.5} -TSP	
Installation	Near Reference Station (3/4 meters)	Near Reference Station (3/4 meters)	
Pre-Test	Quality Check in zero air conditions	Quality Check in zero air conditions	
Co-Located Period	4-5 weeks	8 weeks	
Sampling Period	30 seconds. Hourly mean is used because the reference station measurements are hourly.	60 seconds. Hourly mean is used because the reference station measurements are hourly.	
Validation	Cross-validation is used. Also, some ranges of measurement are eliminated, where the reference station is not available. Cross-validation is used. Also, some ranges o measurement are eliminated, where the reference station is not available.		
Calibration Procedure	is obtained via R ² and spearman correlation	is obtained via R ² and spearman correlation	

Table 1 Calibration Process for Pollutants

Calibration Result for PM


The corrected measurement results after the Smart Calibration Process are shown in the figures below. The correlation between Sensor Unit's PM_{2.5} measurements between Reference Station's PM_{2.5} measurements for hourly and daily mean of data is 0.73, and the correlation between Sensor Unit's PM₁₀ measurements between Reference Station's PM₁₀ measurements for hourly and daily mean of data is 0.77.

Calibration Result for Gases

The corrected measurement results after the Smart Calibration Process are shown in the figures below. The correlation between Sensor Unit's NO₂ measurements between Reference Station's NO₂ measurements for hourly and daily mean of data is respectively 0.823, 0.898

2.1. FIELD APPLICATION

This section describes how the measurements, the general methodology of which is given above, are applied in the field.

Preliminary Preparations

Preliminary preparations for air quality measuring stations with sensors include factory calibrations and field calibrations. Factory calibrations are provided by the sensor manufacturer. Stations capable of making reference measurements were used for field calibrations, as described above. For this purpose, a 1-month comparison measurement was carried out at a reference station in the Turkish air quality monitoring network and the calibration factors were applied.

During Measurements

Air quality measurements were made with two sets of devices.

AQ2 and ASR2 measurements were conducted on the first day,

AQ1 and AQ3 measurements were conducted on the second day,

ASR3 and ASR5 measurements were conducted on the third day and

AQ4 measurement were conducted on the fourth day.

The locations of the sampling points are determined in the macro scale ESIA report. A site visit was made and a location was determined at the micro scale where the devices would be placed.

Measurements were made at a height of 1.5 to 4 meters from the ground, depending on the suitability of the sampling point.

24-hour measurements were made at each point. Parameters measured with sensor devices consist of the averages of instantaneous measurements taken at 10-minute intervals.

After Measurements

The values after the measurements were taken by reading directly on the air quality measuring devices with sensors.

3. MEASUREMENT LOCATION

For the Preconstruction baseline environmental assessment of the ambient air quality was conducted at seven locations: 6 locations at Thilafushi (AQ1, AQ2, and AQ3 in the EIA and the ASR 2, ASR3 and ASR5 recommended for monitoring in the EIA Report) and one location at Villingili (AQ4).

Table 2 Sampling Point Coordinates and Sampling dates

No	Location	Description	Distance to Source (meters)
1	AQ1	Represents dense industrial area	650
2	AQ2	Represents dense industrial area	1000
3	AQ3	Represents dense industrial area	500
4	ASR2	Represents dense industrial area	700
5	ASR3	Represents dense industrial area	500
6	ASR5	Represents dense industrial area	1000
7	AQ4	Represents dense housing and population area	4500

Figure 1 Sampling Points on satellite Map

4. LEGAL FRAMEWORK

Within the scope of the project, particle matter (PM₁₀-PM_{2.5}), NO₂, SO₂ AND TSP emissions were monitored. It is known that Maldives does not have a national air quality policy. Therefore, international standards were used for the evaluation. WHO defines limit values in "Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide" document. European Union directives also have limit values for air pollution prevention (EU Council Directive 2008/50/EC relating to health based standards and objectives for a number of pollutants in ambient air). Germany has an air pollution control regulation titled "Technical Instructions on Air Quality Control" (Technische Anleitung zur Reinhaltung der Luft) and commonly referred to as the TA Luft and determines the limit values to protect the general public and the neighborhood against harmful effects of air pollution on the environment. Comparison of these limit values and chosen parameters and values for the modeling study according to these standards are shown in Table 3.

Pollutant	Averaging Period	TA Luft	EU	WHO Ambient Air Quality Guideline Value	Project Standards
Particular Matter	24 hours	50 µg/m ³	$50 \ \mu g/m^3$	45 μg/m ³	45 μg/m ³
<10 µm (PM ₁₀)	1-year	40 µg/m ³	$40 \ \mu g/m^3$	15 μg/m ³	15 μg/m ³
Particular Matter <2.5 μm (PM _{2.5})	24 hours	-	-	15 (not to be exceeded more than 3-4 times a year)	15
2.0 µm (1 112.5)	1-year	-	20	5	5
	1-hour	200 µg/m ³	200 µg/m ³		$200 \ \mu g/m^3$
Nitrogen Dioxide (NO _x)	24 hours	-	-	25 μg/m ³	25 µg/m ³
	1-year	40 µg/m ³	40 µg/m ³	10 μg/m ³	10 µg/m ³
	1-hour	$350 \ \mu g/m^3$	350 µg/m ³	-	$350 \ \mu g/m^3$
Sulphur Dioxide (SO ₂)	24 hours	125 µg/m ³	125 μg/m ³	40 µg/m ³	40 µg/m ³
~ /	1-year	50 µg/m ³	-	-	50 µg/m ³
TSP*	-	-	-	-	-

Table 3. Limit Values Stipulated in the International Legislation

*There is no limit value for TSP.

5. RESULTS

Table 4 Measurement Results for Location 1

Leasting	Complian Data		А	ir Quality (μg/m		Ambient Conditions		
Location	Sampling Date	PM ₁₀	PM2.5	NO ₂	SO ₂	TSP	Humidity (%)	Temperature (⁰ C)
	2023-1-28 17:00:00	46.34	45.79	0.00	0.00	87.48	78.49	26.85
	2023-1-28 18:00:00	38.13	37.78	0.00	0.00	72.04	81.55	27.28
	2023-1-28 19:00:00	33.93	33.56	0.00	0.00	64.07	84.54	26.80
	2023-1-28 20:00:00	31.42	31.23	0.00	0.00	59.42	84.43	26.77
	2023-1-28 21:00:00	28.10	27.92	0.00	0.00	53.14	84.54	26.69
	2023-1-28 22:00:00	26.16	26.01	0.00	0.00	49.49	84.09	26.59
	2023-1-28 23:00:00	23.53	23.51	0.00	0.00	44.59	85.78	26.52
	2023-1-29 00:00:00	20.51	20.51	0.00	0.00	38.87	85.70	26.42
	2023-1-29 01:00:00	21.01	20.96	0.00	0.00	39.79	87.15	26.25
	2023-1-29 02:00:00	22.03	21.89	0.00	0.00	41.67	86.43	26.14
	2023-1-29 03:00:00	23.33	23.28	0.00	0.00	44.19	87.59	26.07
4.01	2023-1-29 04:00:00	25.00	24.95	0.00	0.00	47.36	87.99	25.94
AQ1	2023-1-29 05:00:00	26.07	25.96	0.00	0.00	49.33	87.41	26.02
	2023-1-29 06:00:00	27.42	27.38	0.00	0.00	51.94	86.64	26.06
	2023-1-29 07:00:00	22.43	22.30	0.00	0.00	42.43	87.24	26.13
	2023-1-29 08:00:00	13.02	12.61	0.00	0.00	24.41	92.43	24.03
	2023-1-29 09:00:00	15.81	15.75	0.00	0.00	29.92	85.81	26.24
	2023-1-29 10:00:00	17.83	17.82	0.00	0.00	33.79	78.51	28.91
	2023-1-29 11:00:00	18.30	18.24	0.00	0.00	34.65	72.17	30.35
	2023-1-29 12:00:00	27.76	27.69	0.00	0.00	52.57	70.05	31.53
	2023-1-29 13:00:00	25.60	25.60	0.00	0.00	48.52	63.15	33.56
	2023-1-29 14:00:00	19.64	19.31	0.00	0.00	37.01	79.65	28.36
	2023-1-29 15:00:00	24.09	24.00	0.00	0.00	45.59	95.80	180.07
	2023-1-29 16:00:00	29.30	29.15	0.00	0.00	55.44	93.40	24.17
	TA Luft	-	-	200	350	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	24 h Average	25.28	25.13	0.00	0.00	47.82	83.77	33.49
	TA Luft	50	-	-	125	-	-	-
Daily	EU	50	-	-	125	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	-	-

Figure 2 Measurement Graphs for Location AQ1

Table 5 Measurement Results for Location 2

			Resu (µg/1	Ambient Conditions				
Location	Sampling Date	PM 10	PM2.5	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperature (⁰ C)
	2023-1-28 17:00:00	28.10	27.95	0.00	0.00	53.15	84.76	25.96
	2023-1-28 18:00:00	29.02	28.84	0.00	0.00	54.89	80.82	26.24
	2023-1-28 19:00:00	30.28	30.12	0.00	0.00	57.29	83.45	26.04
	2023-1-28 20:00:00	31.89	31.69	0.00	0.00	60.31	85.78	26.16
	2023-1-28 21:00:00	31.38	31.27	0.00	0.00	59.42	87.67	26.21
	2023-1-28 22:00:00	33.95	33.75	0.00	0.00	64.23	89.65	26.03
	2023-1-28 23:00:00	41.44	41.29	0.00	0.00	78.45	90.56	25.87
	2023-1-29 00:00:00	35.04	34.83	0.00	0.00	66.27	90.23	25.71
	2023-1-29 01:00:00	32.91	32.72	0.00	0.00	62.25	85.68	25.77
	2023-1-29 02:00:00	35.87	35.62	0.00	0.00	67.83	84.95	25.83
	2023-1-29 03:00:00	40.43	40.11	0.00	0.00	76.41	83.20	25.96
AQ2	2023-1-29 04:00:00	43.88	43.61	0.00	0.00	82.99	83.15	26.03
AQ2	2023-1-29 05:00:00	43.50	43.26	0.00	0.00	82.30	84.04	25.92
	2023-1-29 06:00:00	42.37	42.14	0.00	0.00	80.16	82.67	25.94
	2023-1-29 07:00:00	41.02	40.85	0.00	0.00	77.64	82.22	26.50
	2023-1-29 08:00:00	39.82	39.64	0.00	0.00	75.35	73.77	28.65
	2023-1-29 09:00:00	39.41	39.27	0.00	0.00	74.60	68.54	29.92
	2023-1-29 10:00:00	37.64	37.56	0.00	0.00	71.29	63.74	31.29
	2023-1-29 11:00:00	40.54	40.52	0.00	0.00	76.82	62.37	32.29
	2023-1-29 12:00:00	40.77	40.71	0.00	0.00	77.23	59.54	33.62
	2023-1-29 13:00:00	36.51	36.51	0.00	0.00	69.20	52.62	35.08
	2023-1-29 14:00:00	33.80	33.77	0.00	0.00	64.04	51.45	36.16
	2023-1-29 15:00:00	34.53	34.53	0.00	0.00	65.44	54.38	35.12
	2023-1-29 16:00:00	34.32	34.32	0.00	0.00	65.04	56.05	35.04
	TA Luft	-	-	200	350	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	Average	36.60	36.45	0.00	0.00	69.28	75.89	28.64
	TA Luft	50	-	-	125	-	-	-
Daily	EU	50	-	I	125	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	-	-

Figure 3 Measurement Graphs for Location AQ2

Table 6 Measurement Results for Location 3

				Resu (µg/n	Ambient Conditions			
Location	Sampling Date	PM10	PM _{2.5}	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperature (⁰ C)
	2023-1-29 17:00:00	39.68	39.61	0.00	0.00	75.16	62.70	32.56
	2023-1-29 18:00:00	42.05	41.71	0.00	0.00	79.49	73.66	29.14
	2023-1-29 19:00:00	45.11	44.83	0.00	0.00	85.32	78.54	27.83
	2023-1-29 20:00:00	45.73	45.57	0.00	0.00	86.57	79.97	27.47
	2023-1-29 21:00:00	47.18	46.79	0.00	0.00	89.17	79.93	27.24
	2023-1-29 22:00:00	47.93	47.70	0.00	0.00	90.70	80.67	27.01
	2023-1-29 23:00:00	49.18	48.91	0.00	0.00	93.05	82.84	26.64
	2023-1-30 00:00:00	49.60	49.25	0.00	0.00	93.78	82.71	26.45
	2023-1-30 01:00:00	49.56	49.24	0.00	0.00	93.74	81.85	26.27
	2023-1-30 02:00:00	51.37	51.01	0.00	0.00	97.13	83.83	25.95
	2023-1-30 03:00:00	53.10	52.74	0.00	0.00	100.41	86.27	25.74
102	2023-1-30 04:00:00	54.29	53.94	0.00	0.00	102.68	85.82	25.65
AQ3	2023-1-30 05:00:00	55.56	55.23	0.00	0.00	105.12	85.65	25.66
	2023-1-30 06:00:00	55.69	55.38	0.00	0.00	105.36	86.50	25.61
	2023-1-30 07:00:00	52.24	52.02	0.00	0.00	98.88	84.18	26.38
	2023-1-30 08:00:00	43.59	43.56	0.00	0.00	82.61	68.79	30.52
	2023-1-30 09:00:00	39.81	39.80	0.00	0.00	75.45	58.37	33.89
	2023-1-30 10:00:00	41.22	41.22	0.00	0.00	78.12	57.31	34.74
	2023-1-30 11:00:00	49.37	49.35	0.00	0.00	93.55	58.78	34.27
	2023-1-30 12:00:00	40.13	40.12	0.00	0.00	76.04	59.48	34.14
	2023-1-30 13:00:00	41.78	41.76	0.00	0.00	79.17	59.84	34.07
	2023-1-30 14:00:00	42.93	42.86	0.00	0.00	81.33	60.48	33.66
	2023-1-30 15:00:00	42.78	42.71	0.00	0.00	81.04	61.28	33.29
	2023-1-30 16:00:00	44.22	44.09	0.00	0.00	83.74	64.04	32.57
	TA Luft	-	-	200	350	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	Average	46.84	46.64	0.00	0.00	88.65	73.48	29.45
	TA Luft	50	-	-	-	-	-	-
Daily	EU	50	-	-	-	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	-	-	-	-

Figure 4 Measurement Graphs for Location AQ3

Table 7 Measurement Results for Location 4

				Results (μg/m ³		Ambient Conditions		
Location	Sampling Date	PM10	PM2.5	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperatur e (⁰ C)
	2023-1-29 17:00:00	46.78	46.63	0.00	0.00	88.56	72.89	29.89
	2023-1-29 18:00:00	48.10	47.89	0.00	0.00	91.04	79.32	27.96
	2023-1-29 19:00:00	45.05	44.91	0.00	0.00	85.29	82.28	26.98
	2023-1-29 20:00:00	43.66	43.56	0.00	0.00	82.69	84.06	26.74
	2023-1-29 21:00:00	41.20	41.03	0.00	0.00	77.99	85.36	26.67
	2023-1-29 22:00:00	41.07	40.93	0.00	0.00	77.75	84.87	26.63
	2023-1-29 23:00:00	40.88	40.77	0.00	0.00	77.42	85.18	26.36
	2023-1-30 00:00:00	40.13	40.01	0.00	0.00	75.97	87.07	26.22
	2023-1-30 01:00:00	39.51	39.41	0.00	0.00	74.81	87.42	26.11
	2023-1-30 02:00:00	40.78	40.67	0.00	0.00	77.22	86.29	26.03
	2023-1-30 03:00:00	36.10	35.91	0.00	0.00	68.30	87.29	25.93
ASR2	2023-1-30 04:00:00	34.66	34.58	0.00	0.00	65.64	85.64	25.88
ASK2	2023-1-30 05:00:00	33.88	33.80	0.00	0.00	64.16	87.32	25.82
	2023-1-30 06:00:00	33.45	33.33	0.00	0.00	63.32	87.86	25.82
	2023-1-30 07:00:00	29.67	29.61	0.00	0.00	56.19	83.64	26.84
	2023-1-30 08:00:00	30.82	30.82	0.00	0.00	58.41	75.53	29.29
	2023-1-30 09:00:00	30.97	30.93	0.00	0.00	58.68	70.54	30.63
	2023-1-30 10:00:00	30.14	30.12	0.00	0.00	57.12	73.19	29.95
	2023-1-30 11:00:00	27.83	27.83	0.00	0.00	52.75	71.50	30.49
	2023-1-30 12:00:00	26.43	26.43	0.00	0.00	50.10	63.91	32.97
	2023-1-30 13:00:00	27.02	26.98	0.00	0.00	51.19	63.17	32.93
	2023-1-30 14:00:00	27.83	27.80	0.00	0.00	52.73	64.02	32.46
	2023-1-30 15:00:00	27.60	27.53	0.00	0.00	52.27	65.31	32.19
	2023-1-30 16:00:00	29.51	29.48	0.00	0.00	55.91	64.33	32.17
	TA Luft	-	-	200	350	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	Average	35.54	35.46	0.00	0.00	67.31	78.25	28.46
	TA Luft	50	-	-	125	-	-	-
Daily	EU	50	-	-	125	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	-	-

Figure 5 Measurement Graphs for Location ASR2

Table 8 Measurement Results for Location 5

				Resu (μg/r		Ambient Conditions		
Location	Sampling Date	PM 10	PM2.5	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperature (⁰ C)
	2023-1-30 17:00:00	29.35	29.28	0.00	0.00	55.59	71.76	29.60
	2023-1-30 18:00:00	35.08	35.01	0.00	0.00	66.45	77.43	27.94
	2023-1-30 19:00:00	30.15	30.08	0.00	0.00	57.12	82.67	27.05
	2023-1-30 20:00:00	29.01	28.90	0.00	0.00	54.91	84.21	26.77
	2023-1-30 21:00:00	31.22	31.11	0.00	0.00	59.09	85.77	26.63
	2023-1-30 22:00:00	30.68	30.65	0.00	0.00	58.14	86.53	26.57
	2023-1-30 23:00:00	29.50	29.46	0.00	0.00	55.89	85.75	26.64
	2023-1-31 00:00:00	29.27	29.22	0.00	0.00	55.44	86.13	26.42
	2023-1-31 01:00:00	29.70	29.63	0.00	0.00	56.25	85.76	26.24
	2023-1-31 02:00:00	30.32	30.26	0.00	0.00	57.43	87.11	25.99
	2023-1-31 03:00:00	30.33	30.28	0.00	0.00	57.46	86.44	25.91
A CD 2	2023-1-31 04:00:00	30.84	30.82	0.00	0.00	58.44	86.31	25.76
ASR3	2023-1-31 05:00:00	30.28	30.22	0.00	0.00	57.34	86.60	25.66
	2023-1-31 06:00:00	29.31	29.28	0.00	0.00	55.53	85.26	25.78
	2023-1-31 07:00:00	25.52	25.48	0.00	0.00	48.33	81.50	26.91
	2023-1-31 08:00:00	22.99	22.99	0.00	0.00	43.58	64.84	31.68
	2023-1-31 09:00:00	23.31	23.31	0.00	0.00	44.18	59.75	33.21
	2023-1-31 10:00:00	23.85	23.85	0.00	0.00	45.20	57.37	34.12
	2023-1-31 11:00:00	23.70	23.70	0.00	0.00	44.92	59.77	33.11
	2023-1-31 12:00:00	21.64	21.61	0.00	0.00	41.00	60.23	33.28
	2023-1-31 13:00:00	21.97	21.97	0.00	0.00	41.63	61.28	32.62
	2023-1-31 14:00:00	23.03	23.03	0.00	0.00	43.66	59.82	32.80
	2023-1-31 15:00:00	26.38	26.33	0.00	0.00	49.97	61.66	32.11
	2023-1-31 16:00:00	25.28	25.28	0.00	0.00	47.90	62.71	31.63
	TA Luft	-	-	200	200	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	Average	27.61	27.57	0.00	0.00	52.31	75.28	28.93
	TA Luft	50	-	-	125	-	-	-
Daily	EU	50	-	-	125	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	-	-

Figure 6 Measurement Graphs for Location ASR3

Table 9 Measurement Results for Location 6

				Results (μg/m ³		Ambient Conditions		
Location	Sampling Date	PM10	PM2.5	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperatur e (⁰ C)
	2023-1-30 17:00:00	24.06	24.00	0.00	0.00	45.56	65.99	30.76
	2023-1-30 18:00:00	26.15	26.14	0.00	0.00	49.56	72.18	28.66
	2023-1-30 19:00:00	25.73	25.65	0.00	0.00	48.72	77.84	27.22
	2023-1-30 20:00:00	26.17	26.17	0.00	0.00	49.59	78.29	26.95
	2023-1-30 21:00:00	25.52	25.50	0.00	0.00	48.35	79.04	26.75
	2023-1-30 22:00:00	25.91	25.84	0.00	0.00	49.06	79.42	26.68
	2023-1-30 23:00:00	25.11	25.07	0.00	0.00	47.57	81.09	26.43
	2023-1-31 00:00:00	26.27	26.23	0.00	0.00	49.76	84.13	26.01
	2023-1-31 01:00:00	25.32	25.29	0.00	0.00	47.97	81.65	25.98
	2023-1-31 02:00:00	25.16	25.16	0.00	0.00	47.68	83.51	25.74
	2023-1-31 03:00:00	24.20	24.19	0.00	0.00	45.86	83.03	25.69
4 CD 5	2023-1-31 04:00:00	23.68	23.64	0.00	0.00	44.85	83.20	25.54
ASR5	2023-1-31 05:00:00	23.41	23.37	0.00	0.00	44.34	83.44	25.45
	2023-1-31 06:00:00	22.97	22.95	0.00	0.00	43.52	82.71	25.48
	2023-1-31 07:00:00	20.71	20.71	0.00	0.00	39.25	81.12	26.22
	2023-1-31 08:00:00	19.19	19.17	0.00	0.00	36.36	65.60	30.44
	2023-1-31 09:00:00	17.91	17.91	0.00	0.00	33.94	62.33	31.41
	2023-1-31 10:00:00	18.33	18.33	0.00	0.00	34.73	62.08	31.37
	2023-1-31 11:00:00	17.42	17.40	0.00	0.00	33.00	66.53	29.69
	2023-1-31 12:00:00	16.48	16.47	0.00	0.00	31.22	67.69	29.70
	2023-1-31 13:00:00	15.48	15.43	0.00	0.00	29.30	65.68	30.02
	2023-1-31 14:00:00	14.00	14.00	0.00	0.00	26.54	65.26	30.49
	2023-1-31 15:00:00	14.29	14.29	0.00	0.00	27.09	61.67	31.32
	2023-1-31 16:00:00	16.88	16.88	0.00	0.00	31.98	62.29	31.17
	TA Luft	-	-	200	350	-	-	-
Hourly	EU	-	-	200	350	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	-	-	-	-	-
	Average	21.68	21.66	0.00	0.00	41.08	73.99	28.13
	TA Luft	50	-	-	125	-	-	-
Daily	EU	50	-	-	125	-	-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	-	-

Figure 7 Measurement Graphs for Location ASR2

Table 10 Measurement Results for Location 7

				R (µ		Ambient	Conditions	
Location	Sampling Date	PM 10	PM2.5	NO ₂	SO ₂	TSP (24 Hours Average)	Humidity (%)	Temperature (⁰ C)
	2023-1-31 17:00:00	17.49	17.49	0.00	0.00	33.15	67.04	29.97
	2023-1-31 18:00:00	19.68	19.68	0.00	0.00	37.30	70.97	28.24
	2023-1-31 19:00:00	18.94	18.93	0.00	0.00	35.90	76.63	26.93
	2023-1-31 20:00:00	19.37	19.35	0.00	0.00	36.70	78.46	26.70
	2023-1-31 21:00:00	20.38	20.36	0.00	0.00	38.61	80.02	26.50
	2023-1-31 22:00:00	21.44	21.43	0.00	0.00	40.63	81.66	26.24
	2023-1-31 23:00:00	21.77	21.71	0.00	0.00	41.23	82.11	26.16
	2023-2-1 00:00:00	22.39	22.37	0.00	0.00	42.42	82.13	26.18
	2023-2-1 01:00:00	22.43	22.40	0.00	0.00	42.48	81.55	26.22
	2023-2-1 02:00:00	23.86	23.79	0.00	0.00	45.17	83.05	26.02
	2023-2-1 03:00:00	27.28	27.20	0.00	0.00	51.65	81.68	26.17
404	2023-2-1 04:00:00	28.84	28.81	0.00	0.00	54.65	80.48	26.24
AQ4	2023-2-1 05:00:00	29.21	29.12	0.00	0.00	55.31	80.93	26.06
	2023-2-1 06:00:00	29.34	29.17	0.00	0.00	55.50	81.53	25.99
	2023-2-1 07:00:00	27.36	27.34	0.00	0.00	51.84	77.20	26.91
	2023-2-1 08:00:00	26.73	26.73	0.00	0.00	50.67	62.22	31.80
	2023-2-1 09:00:00	29.60	29.59	0.00	0.00	56.09	59.27	32.91
	2023-2-1 10:00:00	29.48	29.48	0.00	0.00	55.88	60.55	32.70
	2023-2-1 11:00:00	29.23	29.22	0.00	0.00	55.40	60.01	33.10
	2023-2-1 12:00:00	27.62	27.62	0.00	0.00	52.34	57.37	33.99
	2023-2-1 13:00:00	29.58	29.57	0.00	0.00	56.05	57.95	33.94
	2023-2-1 14:00:00	30.59	30.59	0.00	0.00	57.98	61.79	32.45
	2023-2-1 15:00:00	29.63	29.60	0.00	0.00	56.15	62.34	32.14
	2023-2-1 16:00:00	31.98	31.92	0.00	0.00	60.57	59.63	33.10
	TA Luft	-	-	200	350		-	-
Hourly	EU	-	-	200	350		-	-
Limit Values	WHO Ambient Air Quality Guideline Value	-	-	_	-		-	-
	Average	25.59	25.56	0.00	0.00	48.49	71.94	29.03
	TA Luft	50	-	-	125		-	-
Daily	EU	50	-	-	125		-	-
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40		-	-

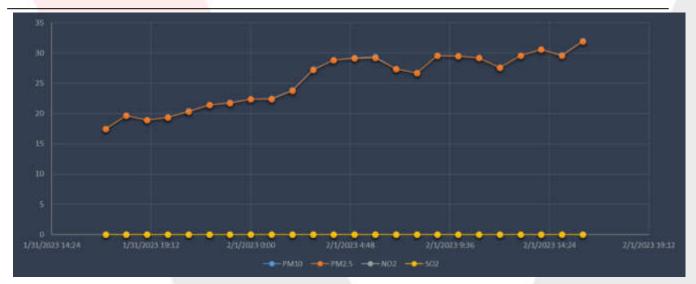


Figure 8 Measurement Graphs for Location AQ4

6. ASSESSMENT

The air quality measurement study was carried out with the aim of determining the air pollutants on ambient air quality. Results were assessed according to the TA LUFT, EU Council Directive 2008/50/EC and WHO limit values and this report was prepared. According to air quality measurement studies, background air quality values are comply with air quality standards.

Environmental monitoring Report Pre-Construction–Stage WtE Facility at Thilafushi

Noise Level Measurments (January 2023)

Prepared by: Mahmood Riyaz

2nd February 2023

Table of contents

Table of contents	2
List of Tables	2
List of Figures	2
1. INTRODUCTION	
2. NOISE LEVEL	
2.1 Results	4
Annex 1. Noise level Hourly recorded	6

List of Tables

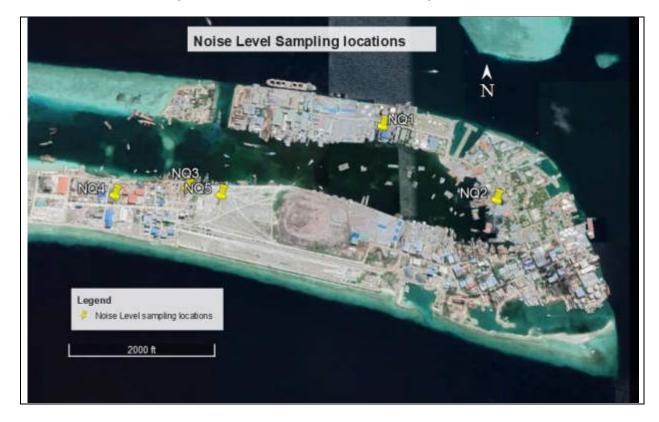
Table 1: Locations selected for Ambient Noise Level Measurements	_ 3
Table 2: Noise measurement records in (dB), 5-6 November 2022 for Thilafushi	_ 4

List of Figures

Figure 1: Ambient noise level sampling locations	_ 4
Figure 2. Graph showing the Ambient noise level recorded	_ 5

1. INTRODUCTION

This is the ambient noise level monitoring report prepared as part of the pre-construction environmental monitoring of the waste to energy (WtE) facility at Thilafushi, Maldives. This report presents methodologies and results of the noise level measurements conducted to fulfill the requirements of the EIA and the Project Environmental Management Plan that is being developed to meet the anticipated environment impacts, health and safety, as well as to ensure the sustainability of the Project.

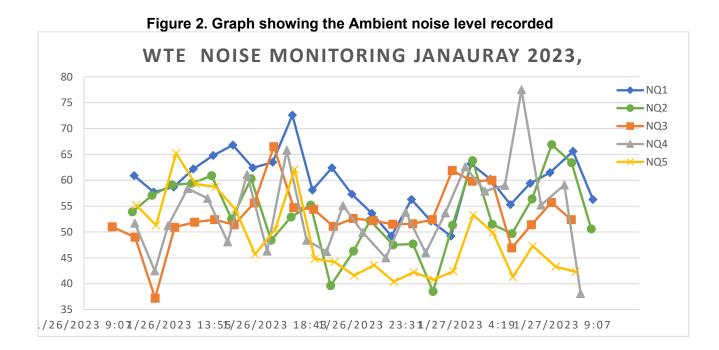

2. NOISE LEVEL

As part of the pre-construction monitoring of Thilafushi Waste to Energy facility, ambient noise levels measurements were repeated at the same five locations used in the EIA report. Ambient noise level measurement was done using a handheld sound level meter (ET-958 Professional Sound Level Meter) Measurements were conducted in all location on 27-29 December 2022 during the day time and night time for 24 hours. Measurements are recorded in NQ1, and NQ2 NQ3, NQ4 and NQ5 from 26th January 2022 10:00 to 27th January 2022 10:00 continuously for 24 four hours. Table 1 summarizes the explanation on the selection of baseline monitoring stations given in the EIA report. **Figure 1** is the map that shows the sampling locations. Graph showing the noise levels in five locations is in **Figure 2**

At each station hourly 7-8 readings are recorded for a duration of 30-50 seconds at each location. Average of ambient noise level in dB(A) was recorded and the average noise of each location is calculated Table 2. Ambient noise levels recorded with the EIA levels presented in the EIA report is given in **Table 2**

Station name	Geographic Coordinates	Reason for selection						
NQ1	4°10'26.4 N, 73°28'59.9 E	Included in the original EIA						
NQ2	4°10'56.6 N, 73°26'53.3 E	Included in the original EIA						
NQ3	4°10'58.3 N, 73°26'09.6 E	Included in the original EIA						
NQ4	4°10'57.3 N,73°25'59.4 E	Included in the original EIA						
NQ5	4°10'57.3 N, 73°26'14.4 E	Included in the original EIA						

 Table 1: Locations selected for Ambient Noise Level Measurements


Figure 1: Ambient noise level sampling locations

2.1 Results

Table 2: Noise measurement records in (dB), 26-27 January 2023 Thilafushi									
NQ1		NQ			NQ3		NQ4		NQ5
Date and time)	dB(A	dB(A)	Date/time	dB(Date/time	dB(A	Date/time	dB(A)	Date/time
				A))			
1/27/2023 10:38	56.3	50.6	1/27/2023 10:33	51	1/26/2023 10:32	38.1	1/27/2023 10:01	56.1	1/26/2023 10:45
1/26/2023 11:38	60.9	53.9	1/26/2023 11:33	49	1/26/2023 11:41	51.7	1/26/2023 11:40	55.2	1/26/2023 11:44
1/26/2023 12:37	57.7	57.1	1/26/2023 12:32	37.2	1/26/2023 12:41	42.5	1/26/2023 12:40	51.3	1/26/2023 12:44
1/26/2023 13:37	58.7	59.1	1/26/2023 13:32	50.9	1/26/2023 13:40	51.2	1/26/2023 13:20	65.2	1/26/2023 13:44
1/26/2023 14:36	62.2	59.4	1/26/2023 14:32	51.9	1/26/2023 14:40	58.4	1/26/2023 14:19	59.3	1/26/2023 14:43
1/26/2023 15:36	64.8	60.9	1/26/2023 15:31	52.4	1/26/2023 15:40	56.5	1/26/2023 15:19	58.7	1/26/2023 15:43
1/26/2023 16:35	66.8	52.5	1/26/2023 16:31	51.4	1/26/2023 16:39	48.1	1/26/2023 16:19	54.4	1/26/2023 16:42
1/26/2023 17:35	62.4	60.3	1/26/2023 17:30	55.6	1/26/2023 17:39	61.1	1/26/2023 17:18	45.7	1/26/2023 17:42
1/26/2023 18:35	63.5	48.4	1/26/2023 18:30	66.5	1/26/2023 18:38	46.3	1/26/2023 18:18	50.5	1/26/2023 18:42
1/26/2023 19:34	72.6	52.9	1/26/2023 19:30	54.7	1/26/2023 19:38	65.8	1/26/2023 19:17	62.1	1/26/2023 19:41
1/26/2023 20:34	58.1	55.2	1/26/2023 20:29	54.4	1/26/2023 20:38	48.4	1/26/2023 20:17	44.8	1/26/2023 20:41
1/26/2023 21:33	62.4	39.6	1/26/2023 21:29	51.1	1/26/2023 21:37	46.2	1/26/2023 21:17	44.2	1/26/2023 21:41
1/26/2023 22:33	57.3	46.3	1/26/2023 22:38	<mark>52.6</mark>	1/26/2023 22:37	<mark>55.1</mark>	1/26/2023 22:06	41.6	1/26/2023 22:40
1/26/2023 23:33	53.6	52.2	1/26/2023 23:28	<mark>52.2</mark>	1/26/2023 23:37	<mark>49.9</mark>	1/26/2023 23:06	43.6	1/26/2023 23:40
1/27/2023 0:32	49.2	47.5	1/27/2023 0:37	<mark>51.5</mark>	1/27/2023 0:36	<mark>45</mark>	1/27/2023 0:15	40.4	1/27/2023 0:39

Table 2: Noise measurement records in (dB), 26-27 January 2023 Thilafushi

WHO guideline for ambient noise level		t	70						
Night time	55.6	50.5		54.0		56.1		44.3	
Night time	01.5	55.2		52.4		55.0		51.4	
Daytime	61.9	55.2		52.4		53.8		51.4	
Average dB(A)	59.5	53.7		53.0		54.7		48.9	
1/27/2023 9:38	65.6	63.4	1/27/2023 9:34	52.4	1/27/2023 9:33	59.1	1/27/2023 9:12	42.3	1/27/2023 9:46
1/27/2023 8:29	61.5	66.9	1/27/2023 8:34	55.7	1/27/2023 8:33	55.2	1/27/2023 8:02	43.3	1/27/2023 8:46
1/27/2023 7:29	59.4	56.4	1/27/2023 7:35	51.4	1/27/2023 7:33	77.5	1/27/2023 7:03	47.3	1/27/2023 7:37
1/27/2023 6:30	55.3	49.7	1/27/2023 6:35	<mark>46.9</mark>	1/27/2023 6:34	<mark>59</mark>	1/27/2023 6:13	41.3	1/27/2023 6:37
1/27/2023 5:30	60.2	51.5	1/27/2023 5:35	<mark>60</mark>	1/27/2023 5:34	<mark>57.9</mark>	1/27/2023 5:13	49.9	1/27/2023 5:37
1/27/2023 4:31	63.2	63.8	1/27/2023 4:36	<mark>59.8</mark>	1/27/2023 4:35	<mark>62.6</mark>	1/27/2023 4:14	53.3	1/27/2023 4:38
1/27/2023 3:31	49.2	51.3	1/27/2023 3:36	<mark>61.9</mark>	1/27/2023 3:35	<mark>53.7</mark>	1/27/2023 3:14	42.4	1/27/2023 3:38
1/27/2023 2:31	52.1	38.5	1/27/2023 2:37	<mark>52.4</mark>	1/27/2023 2:35	<mark>46</mark>	1/27/2023 2:15	40.8	1/27/2023 2:39
1/27/2023 1:32	56.3	47.7	1/27/2023 1:37	<mark>51.6</mark>	1/27/2023 1:36	<mark>53.8</mark>	1/27/2023 1:15	42.2	1/27/2023 1:39

There are no designated national standards for ambient noise level in outdoor industrial area in the Maldives. Compared to WHO and ADB specified noise level standards for outdoors industrial and commercial area the noise level in Thilafushi island and the subproject area is below the noise level standards. The results show that in all the stations ambient noise level are below threshold levels specified by the WHO standards.

Annex 1. Noise level Hourly recorded

 Noise Monitoring data 26-27

 January 2023

 StartTime:2023-01-26 10:15:28

 EndTime:2023-01-27 12:05:28

 Wind
 E 5-15mph

 Temperature
 28.4°C

 Humidity
 29%

 Sunshine

	NQ1		NQ2		NQ3	NQ4		NQ5	
NQ1	Date and time)	NQ2	Date/time	NQ3	Date/time	Nq4	Date/time	NQ4	Date/time
60.9	1/26/2023 11:38	53.9	1/26/2023 11:33	51	1/26/2023 10:32	51.7	1/26/2023 11:40	56.1	1/26/2023 10:45
57.7	1/26/2023 12:37	57.1	1/26/2023 12:32	49	1/26/2023 11:41	42.5	1/26/2023 12:40	55.2	1/26/2023 11:44
58.7	1/26/2023 13:37	59.1	1/26/2023 13:32	37.2	1/26/2023 12:41	51.2	1/26/2023 13:20	51.3	1/26/2023 12:44
62.2	1/26/2023 14:36	59.4	1/26/2023 14:32	50.9	1/26/2023 13:40	58.4	1/26/2023 14:19	65.2	1/26/2023 13:44
64.8	1/26/2023 15:36	60.9	1/26/2023 15:31	51.9	1/26/2023 14:40	56.5	1/26/2023 15:19	59.3	1/26/2023 14:43
66.8	1/26/2023 16:35	52.5	1/26/2023 16:31	52.4	1/26/2023 15:40	48.1	1/26/2023 16:19	58.7	1/26/2023 15:43
62.4	1/26/2023 17:35	60.3	1/26/2023 17:30	51.4	1/26/2023 16:39	61.1	1/26/2023 17:18	54.4	1/26/2023 16:42
63.5	1/26/2023 18:35	48.4	1/26/2023 18:30	55.6	1/26/2023 17:39	46.3	1/26/2023 18:18	45.7	1/26/2023 17:42

72.6	1/26/2023 19:34	52.9	1/26/2023 19:30	66.5	1/26/2023 18:38	65.8	1/26/2023 19:17	50.5	1/26/2023 18:42
58.1	1/26/2023 20:34	55.2	1/26/2023 20:29	54.7	1/26/2023 19:38	48.4	1/26/2023 20:17	62.1	1/26/2023 19:41
62.4	1/26/2023 21:33	39.6	1/26/2023 21:29	54.4	1/26/2023 20:38	46.2	1/26/2023 21:17	44.8	1/26/2023 20:41
57.3	1/26/2023 22:33	46.3	1/26/2023 22:38	51.1	1/26/2023 21:37	55.1	1/26/2023 22:06	44.2	1/26/2023 21:41
53.6	1/26/2023 23:33	52.2	1/26/2023 23:28	52.6	1/26/2023 22:37	49.9	1/26/2023 23:06	41.6	1/26/2023 22:40
49.2	1/27/2023 0:32	47.5	1/27/2023 0:37	52.2	1/26/2023 23:37	45	1/27/2023 0:15	43.6	1/26/2023 23:40
56.3	1/27/2023 1:32	47.7	1/27/2023 1:37	51.5	1/27/2023 0:36	53.8	1/27/2023 1:15	40.4	1/27/2023 0:39
52.1	1/27/2023 2:31	38.5	1/27/2023 2:37	51.6	1/27/2023 1:36	46	1/27/2023 2:15	42.2	1/27/2023 1:39
49.2	1/27/2023 3:31	51.3	1/27/2023 3:36	52.4	1/27/2023 2:35	53.7	1/27/2023 3:14	40.8	1/27/2023 2:39
63.2	1/27/2023 4:31	63.8	1/27/2023 4:36	61.9	1/27/2023 3:35	62.6	1/27/2023 4:14	42.4	1/27/2023 3:38
60.2	1/27/2023 5:30	51.5	1/27/2023 5:35	59.8	1/27/2023 4:35	57.9	1/27/2023 5:13	53.3	1/27/2023 4:38
55.3	1/27/2023 6:30	49.7	1/27/2023 6:35	60	1/27/2023 5:34	59	1/27/2023 6:13	49.9	1/27/2023 5:37
59.4	1/27/2023 7:29	56.4	1/27/2023 7:35	46.9	1/27/2023 6:34	77.5	1/27/2023 7:03	41.3	1/27/2023 6:37
61.5	1/27/2023 8:29	66.9	1/27/2023 8:34	51.4	1/27/2023 7:33	55.2	1/27/2023 8:02	47.3	1/27/2023 7:37
65.6	1/27/2023 9:38	63.4	1/27/2023 9:34	55.7	1/27/2023 8:33	59.1	1/27/2023 9:12	43.3	1/27/2023 8:46
56.3	1/27/2023 10:38	50.6	1/27/2023 10:33	52.4	1/27/2023 9:33	38.1	1/27/2023 10:01	42.3	1/27/2023 9:46

Average dB(A)	59.5	53.7	53	54.7	48.9
Daytime	61.9	55.2	52.4	53.8	51.4
Night time	55.6	50.5	54	56.1	44.3
WHO guidelin level	ie for ambi	ent noise		70	

MDV-AAK-CEMPX-XX-RP-XXX-0002-000

Environmental Monitoring Report - December 2022

Table of contents

TABLE OF CONTENTS	2
LIST OF TABLES	2
LIST OF FIGURES	
1. INTRODUCTION	4
2. AMBIENT AIR QUALITY ASSESSMENT	
2.1 RESULTS	5
3. AMBIENT NOISE LEVEL MEASUREMENTS	6
3.1 RESULTS	
4. MARINE ECOLOGICAL SURVEY	
4.1 DATA ANALYSIS	10
4.2 RESULTS	11
4.3 FISH SURVEYS	15
ANNEX 1 AMBIENT AIR QUALITY REPORT	18
ANNEX 2: NOISE LEVEL HOURLY RECORDS	46
ANNEX 3. MARINE ECOLOGY SURVEY ; FISH CENSUS DATA	47

List of Tables

Table 1: summary of pre-construction sir quality monitoring results for December 2022	5
Table 2: Locations selected for Ambient Noise Level Measurements	7
Table 3: Noise measurement records in (dB), 27-29 December 2022 for Thilafushi	8
Table 4: Substrate categories and the codes.	10
Table 5: Summary of fish census for three site ordered as Rare, Common and Abundant for three site.	16

List of Figures

Figure 1: Sampling Locations Pre-construction Ambient Air Quality monitoring stations	_ 5
Figure 2: Ambient noise level sampling locations	_ 7
Figure 3. Graph showing the Ambient noise level recorded	_ 9
Figure 4: Underwater Marine Survey Locations M8,M9 and M10 for pre-construction Monitoring December 2022	10
Figure 5: Photos Taken from Site 8 (M8) (24 th December 2022) at 5m depth	11
Figure 6: Photos Taken from Site 8 (M8) (24 th December 2022) at 10m depth	11
Figure 7: Average benthic cover and their standard error for M8 at both 5 and 10m depth	12

ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	3

Figure 8: Photos Taken from Site 9 (M9) (24 th December 2022) at 5m depth	13
Figure 9: Photos Taken from Site 9 (M9) (24 th December 2022) at 10m depth	13
Figure 10: Average benthic cover and their standard error for M9 at both 5 and 10m depth	13
Figure 11: Photos Taken from Site 10 (M10) (24 th December 2022) at 5m depth	14
Figure 12: Photos Taken from Site 10 (M10) (24 th December 2022) at 10m depth	14
Figure 13: Average benthic cover and their standard error for M9 at both 5 and 10m depth	15
Figure 14: Fish Families ordered with frequency of occurrence. Pomacentridae is most common family	17

ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	4

1. INTRODUCTION

This is the environmental monitoring report of Ambient air quality, noise level and marine ecology result conducted in December 2022 prepared as part of the pre-construction & construction stage monitoring of the waste to energy (WtE) facility at Thilafushi, Maldives. Environmental monitoring is a contractual requirement of the DBO in the Environmental Impact Assessment report prepared for the project. This report presents results of the environmental monitoring of Ambient noise level and marine ecology assessments conducted in December 2022 as part the requirements of the EIA monitoring and the Project Environmental Management Plan that is being developed to meet the anticipated environment impacts, health and safety, as well as to ensure the sustainability of the Project.

2. AMBIENT AIR QUALITY ASSESSMENT

Preconstruction environmental monitoring of the ambient air quality was conducted in December 2022 from 21-23rd at seven locations: 6 locations at Thilafushi (AQ1, AQ2, and AQ3 in the EIA and the ASR 2, ASR3 and ASR5 recommended for monitoring in the EIA Report) and one location at Villingili (AQ4) **Figure 1**. PM10, PM2.5, SO2, NO2 and O3 parameters were monitored by using air quality monitoring stations based on sensor technology. TSP's were measured by dust sampling devices conforming to the international HSE-MDHS 14/3. As recommended in the EIA report air quality were measured 24 hours at each station.

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	5

Figure 1: Sampling Locations Pre-construction Ambient Air Quality monitoring stations

2.1 Results

	Parameters / Results ^b							
	PM10	PM2.5	SO2	NO2	TSP 24 hour			
Reading Description	µg/m3	µg/m3	µg/m3	µg/m3	average			
	Thilafushi Downwind (AQ-1) (21 st December 2022)							
Minimum	9.36	3.86	00	00				
Maximum	32.8	51	00	00	166.41			
Mean	22.87	8.41	0.00	0.00				
	Thilafushi Crosswind (AQ-2) (22 nd December 2022)							
Minimum	13.9	5.27	00	00				
Maximum	24.8	10.6	00		86.4			
Mean	20.00	7.55	0.00	0.00				
Minimum	21.25	6.64	0.00	0.00	114.36			
Maximum	53.35	22.83	.00	20.71	114.00			

Table 1: summary of pre-construction sir quality monitoring results for December 2022

Rev. No / Date

Page No:

6

	Parameters / Results ^b							
	PM10	PM2.5	SO2	NO2	TSP 24 hour			
Reading Description	µg/m3	µg/m3	µg/m3	µg/m3	average			
Mean	31.06	12.28	0.00	0.86				
	Vilingili Island (AC							
Minimum	18.19	8.33	0.00	0.00				
Maximum	32.21	13.60	0.00	0.00	91.96			
Mean	23.47	10.10	0.00	0.00				
	Thilafushi (ASR2)	(21 st December 20	22)					
Minimum	10.57	2.51	00	2.46				
Maximum	35.16	14.78	27.25	35.74	74.1			
Mean	21.55	8.95	12.83	13.35				
	Thilafushi (ASR3)	(23 rd December 20	22)					
Minimum	2.89	1.42	0.00	0.00	53.16			
Maximum	31.10	14.86	0.00	20.71				
Mean	11.41	4.44	0.00	0.86				
	Thilafushi (ASR5)							
Minimum	19.05	8.82	0.00	0.00	181.96			
Maximum	36.58	12.99	0.00	0.00				
Mean	25.47	10.42	0.00	0.00				
WHO	50.0 ^a	25.0 ^a	20.0 ^a	200.0 ^b				
Standard (µg/m3)				40.0 ^c				

a Based on 24-hour averaging period; b Based on 1-hour averaging period; c Based on 1-year averaging period

Ambient air quality results obtained from the preconstruction monitoring in December 2022 the background air quality values comply with air quality standards.

3. AMBIENT NOISE LEVEL MEASUREMENTS

As part of the pre-construction monitoring of Thilafushi Waste to Energy facility, ambient noise levels measurements were repeated at the same five locations used in the EIA report. Ambient noise level measurement was done using a handheld sound level meter (ET-958 Professional Sound Level Meter) Measurements were conducted in all location on 27-29 December 2022 during the day time and night time for 24 hours. Measurements are recorded in NQ1, and NQ2 on from 27th December 20:00 to 28th December 2022 20:00. In stations NQ3, NQ4 and NQ5 from 28th December 2022 10:00 to 29th December 2022 10:00 continuously for 24 four hours. Table 2 summarizes the explanation on the selection of baseline monitoring stations given in the EIA report. **Figure 2** is the map that shows the sampling locations.

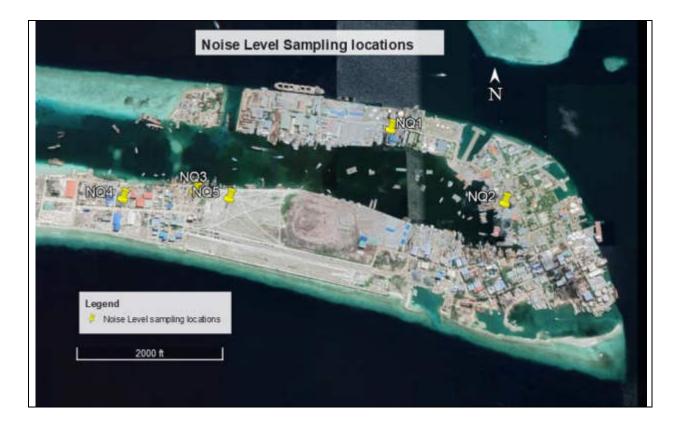

At each station hourly 7-8 readings are recorded for a duration of 30-50 seconds at each location. Average of ambient noise level in dB(A) was recorded and the average noise of each location is calculated Table 3. Ambient noise levels recorded with the EIA levels presented in the EIA report is given in **Table 3**

Table 2: Locations selected for Ambient Noise Level Measurements

Station name	Geographic Coordinates	Reason for selection
NQ1	4°10'26.4 N, 73°28'59.9 E	Included in the original EIA
NQ2	4°10'56.6 N, 73°26'53.3 E	Included in the original EIA
NQ3	4°10'58.3 N, 73°26'09.6 E	Included in the original EIA
NQ4	4°10'57.3 N,73°25'59.4 E	Included in the original EIA
NQ5	4°10'57.3 N, 73°26'14.4 E	Included in the original EIA

Figure 2: Ambient noise level sampling locations

3.1 RESULTS

Table 3: Noise measurement records in (dB), 27-29 December 2022 for Thilafushi

NQ1		NQ		NQ3		NQ4		NQ5	
Date and time	dB(A	Date/time	dB(A	Date/time	dB(A	Date/time	dB(A	Date/time	dB(A
12/27/21:19	53.7	12/27/20:52	55	12/28/10:40	54.8	12/28/10:59	52.9	12/28/10:20	51.2
12/27/22:18	51.3	12/27/21:51	47.6	12/28/11:40	52	12/28/11:59	40.9	12/28/11:20	49.3
12/27/23:18	49.7	12/27/22:50	51.6	12/28/12:39	53.5	12/28/12:58	60.6	12/28/12:21	54.8
12/28/0:17	50.9	12/27/23:50	48.7	12/28/13:39	52.5	12/28/13:58	54.4	12/28/13:21	55.2
12/28/1:16	50.2	12/28/0:59	53.2	12/28/14:38	54.4	12/28/14:57	57.4	12/28/14:20	60.3
12/28/2:16	49.9	12/28/1:58	48.1	12/28/15:38	51.8	12/28/15:57	65.9	12/28/15:20	52.5
12/28/3:15	49.9	12/28/2:57	48	12/28/16:38	52.4	12/28/16:57	58.1	12/28/16:19	49.7
12/28/4:14	49.5	12/28/3:57	52.4	12/28/17:37	55.3	12/28/17:56	55.3	12/28/17:19	43.2
12/28/5:13	45	12/28/4:56	51.2	12/28/18:37	57.2	12/28/18:56	52.3	12/28/18:18	52.1
12/28/6:13	50.2	12/28/5:55	56.1	12/28/19:36	56	12/28/19:55	42.2	12/28/19:17	40.3
12/28/7:12	60.1	12/28/6:55	57.7	12/28/20:36	58.8	12/28/20:55	44.8	12/28/20:17	41.8
12/28/8:11	58.2	12/28/7:54	50.1	12/28/21:35	58.1	12/28/21:54	40.2	12/28/21:17	39.1
12/28/9:11	62.8	12/28/8:53	63.1	12/28/22:35	57.3	12/28/22:54	39.8	12/28/22:16	34.2
12/28/10:20	56.1	12/28/9:52	46.6	12/28/23:35	56.3	12/28/23:54	41.4	12/28/23:16	33.8
12/28/11:13	58.3	12/28/10:52	49.5	12/29/0:34	56.9	12/29/0:53	40.7	12/29/0:15	40.1
12/28/12:12	61.8	12/28/11:55	50.3	12/29/1:34	55.2	12/29/1:53	41.6	12/29/1:15	35.2
12/28/13:11	65.5	12/28/12:54	54.3	12/29/2:33	55.4	12/29/2:52	41.5	12/29/2:14	33.6
12/28/14:10	59.9	12/28/13:52	49.4	12/29/3:33	55.6	12/29/3:52	39.4	12/29/3:14	30.2
12/28/15:09	61	12/28/14:51	65.5	12/29/4:33	55.4	12/29/4:52	46.8	12/29/4:14	31.1
12/28/16:08	58.3	12/28/15:50	52.6	12/29/5:32	57.6	12/29/5:51	50.8	12/29/5:13	35.3
12/28/17:07	57.5	12/28/16:59	54.2	12/29/6:32	56.6	12/29/6:51	42.2	12/29/6:13	40.4
12/28/18:15	55.3	12/28/17:58	60	12/29/7:31	56.7	12/29/7:50	47.1	12/29/7:12	45.8
12/28/19:14	53.6	12/28/18:47	53.7	12/29/8:31	56.3	12/29/8:50	49.7	12/29/8:12	50.6
12/28/20:14	51.2	12/28/19:36	56.4	12/29/9:31	59.3	12/29/9:59	54.4	12/29/9:11	47.3
Average dB(A)	54.9		53.1		55.6		48.3		43.6
WHO guideline for ambient noise level	70								

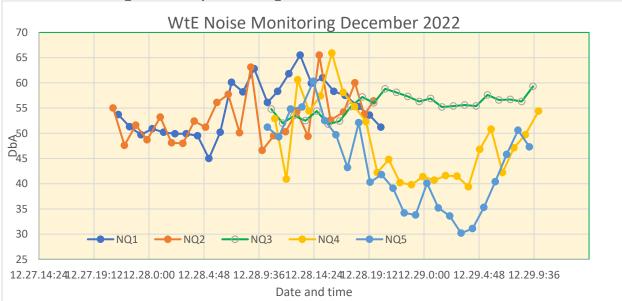


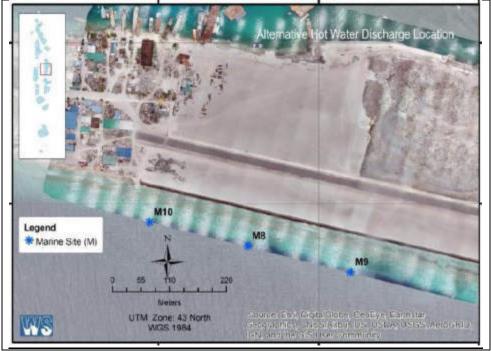
Figure 3. Graph showing the Ambient noise level recorded

There are no designated national standards for ambient noise level in outdoor industrial area in the Maldives. Compared to WHO and ADB specified noise level standards for outdoors industrial and commercial area the noise level in Thilafushi island and the subproject area is below the noise level standards. The results show that in all the stations ambient noise level are below threshold levels specified by the WHO standards.

4. MARINE ECOLOGICAL SURVEY

For the pre-construction site environmental monitoring reef benthic survey was conducted on 24th December 2022 in locations M10, M9 and M8 **Figure 4**. The purpose of the marine survey was to continue monitoring changes to the conditions established in the Environmental Impact Assessment (EIA) during August and September 2018. A re-evaluation of the baseline was established in June 2022, and the following report is based on the survey conducted on December 24, 2022.

A standard approach, established by the Maldives EIA community and approved by the Environmental Protection Agency (EPA), was employed to study benthic cover and fish populations. The survey employed GPS locations, transects surveys conducted at two depths: 5m and 10m at each station (M8, M9 and M10 – as detailed in an earlier report). The methods followed were those outlined by Hodgson et.al (2006) in Reef Check Instruction Manual: A Guide to Reef Check Coral Reef Monitoring.


Three transects of 20 m length were laid, one after the other along the reef, ensuring the transect falls to the specific depth. A quadrat of size 0.5×0.5 m was laid sequentially on the transect, and photo images were taken with the quadrat in the center. This way, every transect would have at least 10 images, resulting in around 60 images from each depth.

ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000				
Rev. No / Date	00/21.01.2023				
Page No:	10				

Figure 4: Underwater Marine Survey Locations M8,M9 and M10 for pre-construction Monitoring December 2022

4.1 DATA ANALYSIS

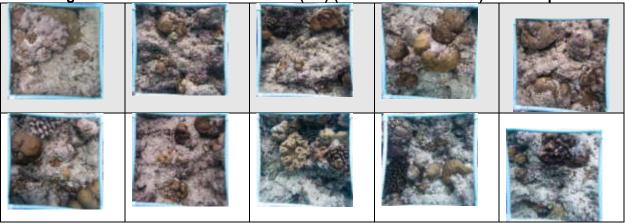
The data collected in June 2022 was analyzed using CoralNet (an online resource for benthic images analysis - https://coralnet.ucsd.edu/), which utilizes artificial intelligence for automatic classification. However, for the December 2022 survey, analysis was conducted using CPCe (Coral Point Count of Excel Extension)1. Like CoralNet, CPCe involves randomly placing points over the quadrat space on the image, but in this case, the points are identified by humans. Twenty-five points were randomly placed on the entire photo image. The points were then classified under the following categories, as listed in Table 4

d	able 4. Substrate categories and the codes							
	Category	Code						
	ROCK (R)	RCK						
	CORAL (C)	HC						
	SAND AND SILT (S)	SND						
	CORALLINACEAE (CO)	CON						
	MACRO ALAGE (MA)	ALG						
	CORAL RUBBLE (CR)	RUB						

Table 4: Substrate categories and the codes.

¹ Kohler, K.E., Gill, S.M., 2006. Coral Point Count with Excel Extension (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences 32, 1259–1269.

¢	allee
A L	катаş


SPONGE (SP)	ENSP
TUNICATE (TU)	TUN
ZOANTHARIAN (ZO)	ZON
SOFT CORAL (SC)	SC
TURF ALAGE (TUR)	TRF
BLEACHED CORAL (BLC)	BCO
UNKOWN (UN)	UNC
SEAGRASS (SG)	SGR
INVERTEBRATES (INV)	INV

4.2 Results

The following presents findings and observations from under marine ecological surveys conducted at the monitoring location at Thilafushi reef.

Status of Site M8: The site is the location that will be used for discharge of waste water from the brine outfall as described in the EIA. The survey conducted in June 2022 reported hard coral cover within 26-28%. In December the mean hard coral cover for both depths was around 25-26% which is more or less the same. Rocks cover 48% of the substrate in at 5m depth and 25% at 10m depth. Sand cover was more (37%) at 10m while at 5m it was 15% (see Figure 1). Coraline algae cover was around 5% which is like what was obtained earlier. Most of the live coral was massive and sub-massive corals.

Fish diversity was highest for one species of Balistidae, Odonus niger and fusilier (Pterocaesio tile) and. The Chromid, Chromis dimidiata, was observed as abundant, which means >40 individual on average at each 20 m transect.. Photographs of the transact quadrats are shown in Figure 5 and Figure 6.Benthic composition of M8 at both 5 and 10m depth is inFigure **7**.

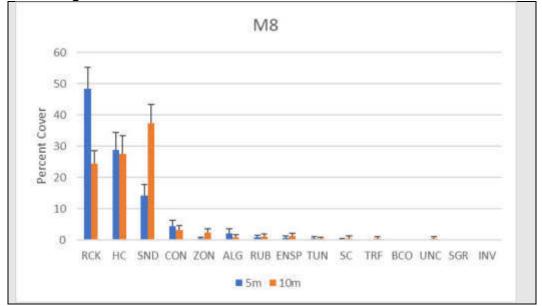


Figure 5: Photos Taken from Site 8 (M8) (24th December 2022) at 5m depth

Figure 6: Photos Taken from Site 8 (M8) (24th December 2022) at 10m depth

alke		Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
ALKATAŞ	ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022 Rev. No / Date		00/21.01.2023
INTERT TRANSPORT		Page No:	12

Figure 7: Average benthic cover and their standard error for M8 at both 5 and 10m depth

Status of Site M9: This location was identified as an alternative for brine discharge and wastewater outfall. This is close to the WtE site at the southern reef of Thilafushi Island. Substrate cover was qualitatively similar to the results obtained for the survey conducted in June. Like Site 8, the highest substrate cover was rock, some 50-60% of the 0.5 x 05 m quadrat, followed by live coral. Live coral cover was also qualitatively like M8. Sand cover was around 5-15%, much lower at 5m. Rubble cover also was low.

With regards to fish Chormis dimidiata was abundant, occurring > 40 individuals along 20 meters transect. Also, the Pomecentrid philippinus and Pterocaesio tile were common at site. Photographs of the transact quadrats are shown in Figure 8 and Figure 9.Benthic composition of M8 at both 5 and 10m depth is in Figure 10.

Figure 8: Photos Taken from Site 9 (M9) (24th December 2022) at 5m depth

	2	C
		A Co

Figure 9: Photos Taken from Site 9 (M9) (24th December 2022) at 10m depth

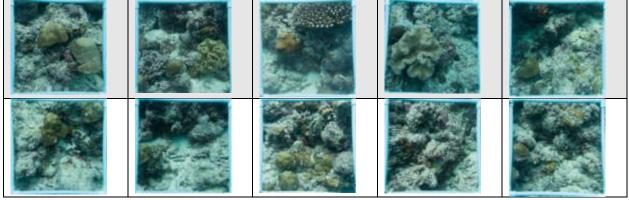
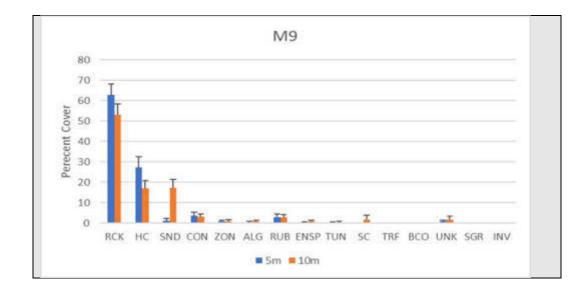



Figure 10: Average benthic cover and their standard error for M9 at both 5 and 10m depth

Status of Site M10: This location has been identified in the EIA report as a potential alternative for the discharge of brine water and waste water. The location is very close to the WtE facility and it is on the southern reef of Thilafushi Island. Site M10 had largest cover for rock, hard coral and sand (around 40-40%) although rock was significantly lower at 10m depth, while sand cover was lower about 15% at 5m and slightly over 30% at 10m depth. Corallinaceae cover is slightly higher at 10m than 5m depth 8% and 3 % respectively. Mirco Algae and rubble cover on the substrates are higher at 5m than 10m at 5 dept micro algae cover does not exceeds 5% of substrate while rubble content is over 5% at 5m depth at 10 m depth both Micro Algae and rubble content is below 3%.


With regard to fish *Chormis dimidiata* was the only abundant fish found in the area. Common occurrence of any species was not recoded at this location. Photographs of the transact quadrats are shown in Figure 5 and Figure 6.Benthic composition of M8 at both 5 and 10m depth is in the graph in

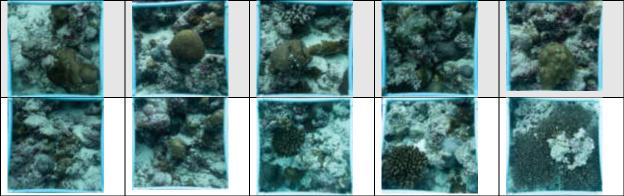

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	15

Figure 13.

Figure 11: Photos Taken from Site 10 (M10) (24th December 2022) at 5m depth

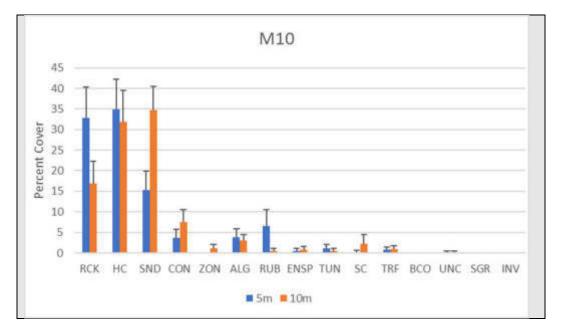


Figure 12: Photos Taken from Site 10 (M10) (24th December 2022) at 10m depth

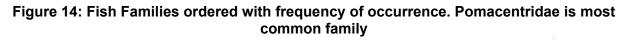
16

4.3 Fish surveys

To ensure that the fish were not disturbed while data on substrate was being collected, a visual assessment of the fish was performed after the transect was laid. As previously mentioned, at each transect and at each depth (5m and 10m), three transects of 20m length were observed. The counts were estimated in the field and the average count of each depth was taken as the mean abundance. The mean abundance was then categorized into three arbitrary scales: "Rare" (no fish to 20 fish), "Common" (20-40 fish), and "Abundant" (counts over 40 fish).

Summaries of the data collected at each site (combining both depths) are provided in **Table 5**. The majority of the fish observed were considered rare. However, there were instances of Pomacentrids (2 species) and Balistidae (Odonus niger) being common at M8 and M9, and Pomacentrid, Chormis didmidiata being abundant at M9 and M10. In M8, only Anthias (Pseudanthias evanis) was considered abundant.

When examining the data at the family level and by depth (5m and 10m) for all three sites, it appears that Pomacentrid (C didmidiata) was more common in deeper waters, while Acanthuridae was more common in shallower waters. However, it is important to note that fish composition can vary greatly due to a variety of factors such as time of day, currents and other environmental conditions. Therefore, it is difficult to make generalizations about the fish composition based on this data.



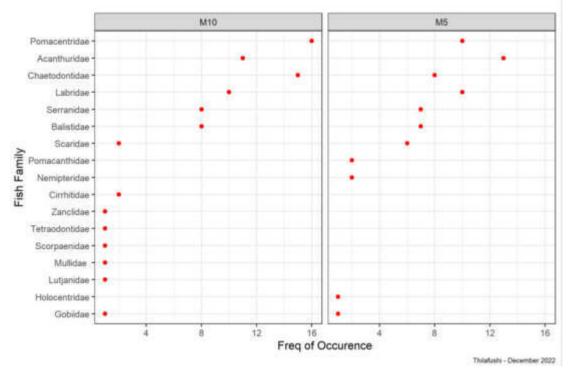

Figure 14 shows frequency of occurrence of fish families at two depths. There appears to no difference in occurrence of fish families at depth, although there are some indication occurrences are more frequent at 10m (M10) Magnified view of the list is provided in the Appendix.

Table 5: Summa	ry of fish o	ensus for	three site	ordered a	is Rare,	Common	and Abund	ant
	-		for three	site.				

Site	Karnily	Scientific.Name	Aburda	Cite .	Family	Scientific, Harrie	Aburda	100	Fandy	Scientific, Nerse	Abat
MB.	Aconthuildee	Acenthania inaccentrouri	Rane	149	Aurthuridae	Read that as Billion at us.	Ram.	BHIE	Authoridae	Acardhana lastistemot	Bare
648	Acanthuridae	Acanthanas regressants	Ram	MV.	Acarthumber	Chrystehastus striatus	Rett	M38	Automation	Acceltural replands	file-1
MR.	Acontiunder.	Denschaetus striatus	Ram	M9	Acarthuridae	Ownerheather transition	Rait	8638	Automotivation	Acardharia filompioni	Hand
4.4.8	Academunidae	Nato breatmatrie	Rate	0.05	Austriation	Margan for a descent for	Rain	MESE	Aparthielder	Conscilentus timitatio	Bare
6.810	Relictions	Ballotageux umdulatus	Rave	601	Acathuridae	orbinecenta dellardini.	Rain	M80	Alathurder	Chevochaettus shriettus	Bain
Add.	Baltitute	Ottionas triger	flam	MF	Acamhuridae	Zebraenesa screpes.	Rank	\$450 \$450	Acardharidae	Clenocheetiuk truncakus Reasi larentrostris	Nave Serve
Add:	Religidas	Othersan might	Comment	M9	Balletidae	Ballatapor orbidator	Rein	MESS.	August Standard	antineautree derijes dirit	1.00
548	Ballididae	Bufflament Ineria	Hain	MO	Raitoblan	Related and the second second	Reve	tettii	di anti-anti-	Self-marine scipes	hard
5410	Chastatoritalas	Disastudes collare	Name	1419	Balichdan	Cidanus riger	Rate	MAG	Bullelider	thefertance contribution	inere of
ME		CONTRACTOR OF A DESCRIPTION OF A DESCRIPTION	Barn	M9	Baltytidae	Oritoniai niger	Common	1416	Balatober	Mala Infras Indiana	here
	Chaetadoritikae	Chaettedon faituda		889	Ballyhdar	Sufflament Inesa	Rate	4010	Bulletidae	Chicago, signs	there a
148	Chaetadoritidae	Disebodie gutatiaimus	Bare	NO.	Chaerostoreidae	Charitation guitatiannai	Rate	8410	Chairful and a mailer	Chaetoshiri faitulle	Rain
548	Craetadortidae	Diambodon klainii	Marie	1444	(Diamonitoviidae)	Eharttuloo kleinit	itere .	8810	(Daytobrillian	Charteston pultaneurosa	Bare
445	Chartodovitidae	Rentpiger Novisalmus	Nare:	149	Chartodonlider	Chevholon medlegailarianals.	Rett	ME30	Unercolumbia	Parcipager Recessions	fears
643	Craetabortidae	Henius Fusi allah realize	Raine	MH.	Contratornidae	For-Cargor Tarrisinton	Kain	1418	Chapterinten	International Collect	Name
645	Contributient	Falacirrbibei arcatus	Bare	MN .	Chartoducidae	thereid as a hybrid space as a start	Rain	with:	Charicement/deal	Interfection digmentation	(frame)
4410	Certifidae	Palactorijes Isotteri.	Rev.	INV	LofoTollare	Reaffering andlerit-	Reve	MAR	Overschottiken	Merclanita amonthemia	(hant)
645	Labridae	Bootianusi-therie	Bare	1411	Labrolat	Hallphonese cosmittee	Awe	44000	-Contribution	Physical and a second s	free
ME	Labridge	Halichsleres Isochefus	Bare	M9.	Laderidae	Halt Rowers Techniques	Res 1	NEE	mphoto-shridhan	Myrightelic Australia	Bart
641	Labridge	Hafichsteres hortstatist	Rate	685	Lafe also	3 alterative biopher	Apre 1	MID	California	Calendates deviations	. Nam
A.F.B.	Labridge	Laterdates bilinfor	Baiw	1414	Laterities	Passadachellinan Senatarria	Rater	MIL	Latersteine	Paratichallous besatarrea	here
405	Labridge	Presidentiation benefamilia	Bare	NN	Laberthan	Thelassome amblycopheters	Rent .	MLD	Labridge	Phalamorina antidiyonghakan Phalamoring generali	- Nare Nare
MA	Labridge	Thalasseres arehivinghalare	Bare	145	Luperidae	Parocaraio.tile	Communities	MARK .	Multilian	Parigerous Barbertous	1.00
MB	Pomelanthidae	Destrongues multiplinis	Bare	MID .	Maniphoridae	Scolografic billiomatia	fiere .	wig -	Survival and the	Teleforente Inflormation	face.
MA	Paracentidae	Departie deviduate	Rare	349	Pomarantridae	Chronis dinidiata	Epilinea	4411	Roma anti-	Contrage Pullights	144
640	Persentitian	Deserve dividuals	Comment	MIX	PomacentyMag	Chromit directions	Abyular	MIL	Pump printing	Crown deallars	here
				MP	Portacionitable	Chromes epertudaria	Rate	6450	Roman mittiday	Chromin divisities	Alexan
6.40	Perminentidae	Dooris weben	Rare	NO.	Pomacento alian	Plantroglpphidodon lacrymatic	Rate	MM	Pomacerondael	Christin (percularit)	hard
MR	Persientidae	Femalerthis campless	Rare	MH2	Pomacent later	Humacondrus (Negharisa)	fare	8430	Pomacanet that	Chrunne ternationals	Hart
6.4.0	Panacentridae	Pemalertrus.ph/lipperse	Commu	140	Permanentration	Pomacoréroi tagenikiemiti	Rent	MAGE.	Puma provider	Chrones webert	flare
6.02	Scattabae	Discurys sandates	Rarie	MIN	Permanentrislas	Permanenthan philippinum	Name -	M38	Average and takes	Peringluhidulor leinput	te here
648	Scandae	Scarus Unselor	Fiarle	is the second se	Permanentialasi	Remainstration philippings	Common	WELE.	Apresant Mark	Promas and not improved with	Bare
548	Serrarudae	Anyperiodiet Inusagrametricus	Flate:	MIX	- Scalifie	High-Ini and Nated	Bark	94210	Purine entridant	Prometer and the phillippinese	(Rave
148	Servarudae	Dephalopholic argue:	Rare	1414	Depression	Scana Moder	Rent.	9010	ScatMae	Chinese services	Den
545	Serrarudae	Cephalophatis inspectas.	Rain-	1419	Seriodae .	Any permitten in compression of	Kara	\$450	To acidese	Science frendstation	Bard
545	Serversdee	Epimepholics apiliphonesis	Rave	1,171	Services .	Exphatiopholis argue	Term	5450	Malidae	Scano riger	Bary
648	Serveridae	Presidentification evenus	Aburtha	MN	herrarillan	Contraination in terms of the	Barn	8410	Burgeenidae	to or past-higher converting and	Race
548	Serreridae.	Presidentities appartitions in	Bare	MIL	Investigation	Pasadardhiar domai	Barn	MAG .	Service State	Cophologicalis argos	Bark
	4 270 CH CH F	Company and the second second	1005.7	1440	Tatt autominiae	Correlation colorities	Rain	10110	Service date	Spinophoka, spitztovnym Provulateljan avastal	(fare) Hare
								1011	EartHat	January manager	Dana

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	19

ANNEX 1 AMBIENT AIR QUALITY REPORT

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	20

GOVERNMENT of MALDIVES

WtE Energy Facility Project

BACKGROUND AIR QUALITY MEASUREMENT REPORT

Thilafushi Island/MALDIVES

MALDIVES 2022

Page No:

AIRS Air Quality Management Services Ltd Mustafa Kennal Mah. Via Green Is Mrk. B-36 Cankaya Ankara TURKEY Tel: +90 312 221 02 45 Fax: +90 312 221 02 45 www.airsaqms.com

Test Report

Customer Name/Address	Alke Alkatas Joint Venture Pvt Ltd H.H.Moomiyaage 5A Asaree Hingun K.Male 20265 MALDIVES
Order No.	EN-M/2207/417_01
Name and identity of test item	Immission (Air Quality)
Remarks	
Date of Test	21.12.2022-23.12.2022
Number of Pages of the Report	27 Pages
Test Method	Air Quality Sensors HSE-MDHS 14/3
Test results	The test results are given in the measurement result tables.
Enviromental conditions	Environmental conditions during the measurement are given in the measurement result tables.
Comments	*

The test and/or measurement results, the uncertainties (if applicable) with confidence probability and test methods are given on the following pages which are part of this report.

Reporter and Approval Ismail Ulusoy Environmental Engineer

TABLE OF CONTENTS

1. INTRODUCTION	6
2. MEASUREMENT METHODS	6
2.1. FIELD APPLICATION	
3. MEASUREMENT LOCATION	
4. LEGAL FRAMEWORK	
5. RESULTS	
6. ASSESSMENT	

LIST OF TABLES

Table 1 Calibration Process for Pollutants	7
Table 2 Sampling Point Coordinates and Sampling dates	10
Table 3. Limit Values Stipulated in the International Legislation	
Table 4 Measurement Results for Location 1	
Table 5 Measurement Results for Location 2	
Table 6 Measurement Results for Location 3	
Table 7 Measurement Results for Location 4	
Table 8 Measurement Results for Location 5	
Table 9 Measurement Results for Location 6	
Table 10 Measurement Results for Location 7	

Page No:

24

REPORT - DECEMBER 2022

LIST OF FIGURES

Figure 1 Sampling Points on satellite Map	
Figure 2 Measurement Graphs for Location AQ1	
Figure 3 Measurement Graphs for Location AQ2	
Figure 4 Measurement Graphs for Location AQ3	
Figure 5 Measurement Graphs for Location ASR2	
Figure 6 Measurement Graphs for Location ASR3	
Figure 7 Measurement Graphs for Location ASR2	
Figure 8 Measurement Graphs for Location AQ4	

REPORT - DECEMBER 2022

1. INTRODUCTION

This report has been prepared with the aim of determining the air quality in the sensitive receptors located in the impact area of the The Greater Malé Waste to Energy Project. Air quality results were determined for PM₁₀, PM_{2.5}, NO₂, SO₂, TSP and O₃ parameters.

2. MEASUREMENT METHODS

PM₁₀, PM₂₅, SO_{2s} and NO₂ parameters were monitored by using air quality monitoring stations based on sensor technology. TSP's were measured by dust sampling devices conforming to the international HSE-MDHS 14/3. Ideally as recommended in the EIA report air quality should be measured 24 hours at each station, all measurements were made at each point within this framework 24 hours a day.

The US EPA refers to the term 'air sensor' as a class of non-regulatory technology that is low-cost, portable, capable of measuring several pollutants simultaneously, and often easier to operate than regulatory stations. For example, monitoring air pollution with reference measurement methods (regulatory stations) requires skilled operators to maintain and calibrate measuring instruments. On the other hand, air sensors describe the hardware and software set that can be operated without human intervention and enable unskilled users to monitor air pollution without additional technical knowledge.

Sensor Name	Sensor Type	Accuracy r ² -score*	Range
PM2.5	Laser scattering	×0.9	0 to 1000 µg/m ³
PMID	Laser scattering	>0.9	0 to 1000 µg/m ³
NO ₂	Electro chemical	×0.82	0 to 5000 ppb
SO ₂	Electro chemical	×0.82	0 to 5000 ppb
Temperature	CMOS IC	0.9	-20°C to 60°C
Humidity	CMOS IC	0.9	5% to 95%

Sensor specifications which are used for measurement study are shown below.

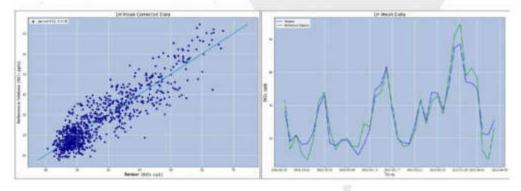
The accuracy of these low-cost sensors is as critical as measuring the air quality. With the smart calibration process, low-cost sensors are corrected and accurate compared to reference stations. The Smart Calibration Algorithm consists of the below operational steps shown figure below.

REPORT - DECEMBER 2022

Sensor Units were calibrated using reference stations for a period before the deployment. The calibration process for particle matter and gas pollutants measurement is explained below.

Table 1 Calibration Process for Pollutants

AND THE REAL PROPERTY.	Methodology						
Description	NO2-SO2-O3	PMie-PMis					
Installation	Near Reference Station (3/4 meters)	Near Reference Station (3/4 meters)					
Pre-Test	Quality Cheek in zero air conditions	Quality Check in zero air conditions					
Co-Located Period	4-5 weeks	8 weeks					
Sampling Period	30 seconds. Hourly mean is used because the reference station measurements are hourly.	60 seconds. Hourly mean is used because the reference station measurements are hourly.					
Validation	Cross-validation is used. Also, some ranges of measurement are eliminated, where the reference station is not available.	Cross-validation is used. Also, some ranges of measurement are eliminated, where the reference station is not available.					
Calibration Procedure	is obtained via R ² and spearman correlation	is obtained via R2 and spearman correlation					


Calibration Result for PM

The corrected measurement results after the Smart Calibration Process are shown in the figures below. The correlation between Sensor Unit's PM25 measurements between Reference Station's PM25 measurements for hourly and daily mean of data is 0.73, and the correlation between Sensor Unit's PM10 measurements between Reference Station's PM10 measurements for hourly and daily mean of data is 0.77.

Calibration Result for Gases

The corrected measurement results after the Smart Calibration Process are shown in the figures below. The correlation between Sensor Unit's NO₂ measurements between Reference Station's NO₂ measurements for hourly and daily mean of data is respectively 0.823, 0.898

Rev. No / Date

Page No:

00/21.01.2023 28

2.1. FIELD APPLICATION

This section describes how the measurements, the general methodology of which is given above, are applied in the field.

Preliminary Preparations

Preliminary preparations for air quality measuring stations with sensors include factory calibrations and field calibrations. Factory calibrations are provided by the sensor manufacturer. Stations capable of making reference measurements were used for field calibrations, as described above. For this purpose, a 1-month comparison measurement was carried out at a reference station in the Turkish air quality monitoring network and the calibration factors were applied.

For TSP measurements, filter conditioning was carried out in the laboratory. For this purpose, cassettes and filters were conditioned for 24 hours in a room conditioned at 25 degrees Celsius and 50% humidity and were tared.

During Measurements

Air quality measurements were made with four sets of devices. AQ1, AQ2, AQ3 and ASR2 measurements were made with these devices on the first day, and ASR 3, ASR5 and AQ4 points were measured on the second day.

The locations of the sampling points are determined in the macro scale ESIA report. A site visit was made and a location was determined at the micro scale where the devices would be placed.

Measurements were made at a height of 1.5 to 4 meters from the ground, depending on the suitability of the sampling point.

24-hour measurements were made at each point. Parameters measured with sensor devices consist of the averages of instantaneous measurements taken at 10-minute intervals. For TSP measurements, 24-hour uninterrupted sampling was carried out.

After Measurements

The values after the measurements were taken by reading directly on the air quality measuring devices with sensors.

In TSP measurements, the filters were brought to the laboratory, conditioned for 24 hours at 25 degrees Celsius and 50% humidity for 24 hours and weighed. The 24-hour dust amount was found by subtracting the last weighing result from the first weighing result.

Page No:

29

00/21.01.2023

3. MEASUREMENT LOCATION

For the Preconstruction baseline environmental assessment of the ambient air quality was conducted at seven locations: 6 locations at Thilafushi (AQ1, AQ2, and AQ3 in the EIA and the ASR 2, ASR3 and ASR5 recommended for monitoring in the EIA Report) and one location at Villingili (AQ4).

No	Location	Description	Distance to Source (meters)
1	AQ1	Represents dense industrial area	650
2	AQ2	Represents dense industrial area	1000
3	AQ3	Represents dense industrial area	500
4	ASR2	Represents dense industrial area	700
5	ASR3	Represents dense industrial area	500
6	ASR5	Represents dense industrial area	1000
7	AQ4	Represents dense housing and population area	4500

Table 2 Sampling Point Coordinates and Sampling dates

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	30

Figure 1 Surging Points on satulity Map

Page No:

31

4. LEGAL FRAMEWORK

Within the scope of the project, particle matter (PM10-PM2.5), NO2, SO2 AND TSP emissions were measured. It is known that Maldives does not have a national air quality policy. Therefore, international standards were used for the evaluation. WHO defines limit values in "Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide" document. European Union directives also have limit values for air pollution prevention (EU Council Directive 2008/50/EC relating to health based standards and objectives for a number of pollutants in ambient air). Germany has an air pollution control regulation titled "Technical Instructions on Air Quality Control" (Technische Anleitung zur Reinhaltung der Luft) and commonly referred to as the TA Luft and determines the limit values to protect the general public and the neighborhood against harmful effects of air pollution on the environment. Comparison of these limit values and chosen parameters and values for the modeling study according to these standards are shown in Table 3.

Particular Matter	24 hours	50 µg/m ³	50 µg/m ³	45 µg/m ³	45 µg/m ¹
<10 µm (PMu)	1-year	40 μg/m ³	40 µg/m ³	15 µg/m ³	15 µg/m ¹
Particular Matter <2.5 µm (PM2.1)	24 hours	÷		15 (not to be exceeded more than 3-4 times a year)	15
<2.5 Jun (1.5453)	1-year	÷	20	5	5
Nitrogen Dioxide (NOs)	1-hour	200 µg/m²	200 µg/m³		200 µg/m ³
	24 hours	-		25 µg/m ³	25 µg/m ³
	1-year	40 µg/m ³	40 µg/m ³	10 µg/m ³	10 µg/m ¹
	1-hour	350 µg/m³	350 µg/m ¹	/	350 µg/m ³
Sulphur Diccode (SO ₂)	24 hours	125 µg/m ³	125 µg/m ³	40 µg/m ³	40 µg/m ¹
	1-year	50 µg/m ³		V .	50 µg/m ¹
TSP*	•		*		

Table 3. Limit Values Stipulated in the International Legislation

"There is no limit value for TSP.

MDV-AAK-CEMPX-XX-RP-XXX-0002-000 00/21.01.2023 32

Page No:

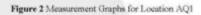
ENVIRONMENTAL MONITORING

REPORT - DECEMBER 2022

Air Quality Management Service

5. RESULTS

Table 4 Measurement Results for Location 1


			N	ir Quality Cogim	Ambient Conditions			
Location	Sampling Date	PMus	PMLs	NOi	SOL	TSP (24 Hours Average)	Humidity (%)	Temperature (*C)
	2022-12-21 13:00:00	16.1	2,77	0.00	0.00		76.82	31.10
	2022-12-21 14:00:00	23.9	7.71	0,00	0.00		82.19	29,40
	2022-12-21 15:00:00	19.2	3.86	0.00	0.00		77.60	31.46
	2022-12-21 16:00:00	32.8	8.1	0.00	0.00	1 B	69.71	33.08
	2022-12-21 17:00:00	30.5	8.93	0.00	0.00		71.84	30.93
	2022-12-21 18:00:00	24.6	9.22	0.00	0.00		82.14	27.72
	2022-12-21 19:00:00	17.4	6.59	0.00	0.00		86.71	27.30
	2022-12-21 20:00:00	17.1	7.59	0.00	0.00	1 8	90.13	26.12
	2022-12-21 21:00:00	14.4	7.19	0.00	0.00		93.97	25.65
	2022-12-21 22:00:00	13	6.2	0.00	0.00		93.62	25.99
	2022-12-21 23:00:00	14.1	6.76	0.00	0.00		93.66	26.04
AQI	2022-12-22 00:00:00	11.3	5.7	0.00	0.00	166.41	95.56	26.02
	2022-12-22 01:00:00	9.36	4.69	0.00	0.00		95.57	26.08
	2022-12-22 02:00:00	11.6	5:62	0.00	0.00		94.60	26.14
	2022-12-22 03:00:00	12.5	5.98	0.00	0.00		94.47	26.25
	2022-12-22 04:00:00	13.1	6.23	0.00	0.00		94.34	26.27
	2022-12-22 05:00:00	12.5	5.79	0.00	0.00		94.33	26.52
	2022-12-22 06:00:00	13	5.83	0.00	0.00		94.41	26.85
	2022-12-22 07:00:00	14.6	5.71	0.00	0.00		92.30	27.75
	2022-12-22 08:00:00	23.1	7.96	0.00	0.00		86.36	29.14
	2022-12-22 09:00:00	129	51	0.00	0.00		82.93	29.70
	2022-12-22 10:00:00	22.6	6.57	0.00	0.00	1	81.17	30,11
	2022-12-22 11:00:00	31.3	9.7	0.00	0.00	1	78.51	30.72
	2022-12-22 12:00:00	21.8	6.14	0.00	0.00	1 1	79.35	30.03
	TA Luft	-		200	350	1 ex		-
Hourty	EU			200	350	-		-
Limit Values	WHO Ambient Air Quality Guideline Value	۲			2		۲	
1	14 h Average	22.87	8.41	0.00	0.00	166.41	66.32	29.68
112-202	TA Luft	50			125		0.0	•
Daily	EU	50	240	(97)	125		(197)	
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40		273	10

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	33

Page No:

34

ENVIRONMENTAL MONITORING

REPORT - DECEMBER 2022

Location					Resu Caugh			Ambient	Conditions
	Sampling Date	PMu	PMia	NOL	SO	TSP (24 Hours Average)	Humidity (%)	Temperata re CO	
	2022-12-21 13:00:00	18.8	5.79	0.00	0.00		78.05	28.56	
	2022-12-21 14:00:00	16.8	5.27	0.00	0.00		80.56	28.17	
	2022-12-21 15:00:00	20	5.9	0.00	0.00		76.51	29.08	
	2022-12-21 16:00:00	24.8	7,74	0.00	0.00		73.45	29.26	
	2022-12-21 17:00:00	30	10.6	0.00	0.00		76.85	28.53	
	2022-12-21 18:00:00	24.5	9.31	0.00	0.00		82.83	27.58	
	2022-12-21 19:00:00	20.1	7.53	0.00	0.00		84.75	27.47	
	2022-12-21 20:00:00	22.3	9.77	0.00	0.00		87.53	26.10	
	2022-12-21 21:00:00	15.1	7.15	0.00	0.00		90.92	25.36	
	2022-12-21 22:00:00	18	8.24	0.00	0.00		90.09	25.76	
	2022-12-21 23:00:00	15.7	7	0.00	0.00	86.40	90.29	26.00	
AQ2	2022-12-22 00:00:00	13.9	6.28	0.00	0.00		91.04	25.98	
	2022-12-22 01:00:00	18.8	5.79	0.00	0.00		71.66	24.08	
	2022-12-22 02:00:00	16.8	5.27	0.00	0.00		74.73	23.63	
	2022-12-22 03:00:00	20	5.9	0.00	0,00		61.83	23.58	
	2022-12-22 04:00:00	24.8	7.74	0.00	0.00		61.15	23.75	
	2022-12-22.05:00:00	30	10.6	0.00	0.00		60.42	23.85	
	2022-12-22-06:00:00	24.5	9.31	0.00	0.00		60.06	23,77	
	2022-12-22 07:00:00	20.1	7.53	0.00	0.00		59.71	23.69	
	2022-12-22 08:00:00	22.3	9.77	0.00	0.00	1	59.56	23.73	
	2022-12-22 09:00:00	15.1	7.15	0.00	0.00		88.23	26.65	
	2022-12-22 10:00:00	18	8.24	0.00	0.00]	85.43	27.20	
	2022-12-22 11:00:00	15.7	7	0.00	0.00		85.82	27.93	
	2022-12-22 12:00:00	13.9	6.28	0.00	0.00		80.43	28.04	
	TA Luft	-		200	350	(H)			
Hourly	EU			200	350				
Limit Values	WHO Ambient Air Quality Guideline Value	×	1	- 10	21	<u>ت</u> ه.	8 2 0	20	
	Average	20,00	7.55	0.00	0.00	86.40	58.24	28.97	
	TA Luft	50			125				
Daily	EU	50	1.00	. L.	125	1 S.		. a	
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	-	4	-	

Table 5 Measurement Results for Location 2

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	35

Figure 3 Measurement Graphs for Location AQ2

MDV-AAK-CEMPX-XX-RP-XXX-0002-000 00/21.01.2023

Page No:

36

ENVIRONMENTAL MONITORING

REPORT - DECEMBER 2022

Location				Resul	Ambient Conditions			
	Sampling Date	PMa	PM2.5	NOb	SO	TSP (24 Hours Average)	Hunridity (%)	Temperature (°C)
	2022-12-21 13:00:00	21.25	6.64	0.00	0.00		69.40	28,50
	2022-12-21 14:00:00	23.23	7.59	0.00	0.00]	65.53	28.30
	2022-12-21 15:00:00	22.54	7.23	0.00	0.00	1	63,50	28,42
]	2022-12-21 16:00:00	22.82	7.72	0.00	0.00]	67.74	27.82
Ţ	2022-12-21 17:00:00	21.93	6.94	0.00	0.00]	64.78	28.46
j	2022-12-21 18:00:00	30.68	10.17	0.00	0.00	1	60.23	29.14
	2022-12-21 19:00:00	28.59	9.79	0.00	0.00	1	63.15	28.38
	2022-12-21 20:00:00	30.40	11.59	0.00	0.00	1	70.90	26,94
	2022-12-21 21:00:00	32.77	12.67	0.00	0.00	1	71.63	26.91
	2022-12-21 22:00:00	33.38	14.21	0.00	0.00	1	75.57	25,19
	2022-12-21 23:00:00	33.86	14.54	0.00	0.00		77.61	25.24
	2022-12-22 00:00:00	35.31	14.91	0.00	0.00		75.99	25.49
AQ3	2022-12-22 01:00:00	44.36	18.91	0.00	0.00	114.36	76.68	25.59
	2022-12-22 02:00:00	27.93	11.60	0.00	0.00	1	77.04	25.63
	2022-12-22 03:00:00	28.91	11.99	0.00	0,00	1	77.14	25.73
	2022-12-22 04:00:00	31.15	12.80	0.00	0.00	1	75.76	25.89
1	2022-12-22 05:00:00	53.35	22.83	20.71	0.00	-	55.60	23.48
	2022-12-22.06:00:00	44.72	18.67	0.00	0.00		69.04	25.32
1	2022-12-22 07:00:00	31.41	12.20	0.00	0.00		73.60	26.86
ĩ	2022-12-22 08:00:00	44.96	19.64	0.00	0.00		79.93	25.57
1	2022-12-22 09:00:00	30.89	14.08	0.00	0.00	1	83.97	24.85
1	2022-12-22 10:00:00	23.25	9.76	0.00	0,00	1	80.55	25.61
i i	2022+12-22 11:00:00	22.22	8.40	0.00	0.00	1	76.55	26.67
	2022-12-22 12:00:00	25.46	9.89	0.00	0,00	1	76,60	26.60
	TA Luft	4	- ÷	200	350	14 - C	· · ·	
Hourly	EU	14 - C	+	200	350		(i i i i i i i i i i i i i i i i i i i	
Limit Values	WHO Ambient Air Quality Guideline Value	(#1)	*	100	8	a.	*	94
	Average	31.06	12.28	0.86	0.00	114.36	69.88	29.48
	TA Luft	50	*	0.00				
Daily	EU	50		2.52	18			
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	1	1	*	÷* :

Table 6 Measurement Results for Location 3

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	37

Figure 4 Measurement Graphs for Location AQ3

Page No:

38

ENVIRONMENTAL MONITORING

REPORT - DECEMBER 2022

Location				Ambient Conditions				
	Sampling Date	PM ₀₀	PMat	NOs	SOL	TSP (24 Hours Average)	Humidity (%)	Temperatur e (*C)
	2022-12-21 16:00:00	10.57	2.51	0.00	5.63		81.66	28.18
	2022-12-21 17:00:00	35.16	14.78	0.00	8.77		66.36	28.73
	2022-12-21 18:00:00	20.07	5:30	27.25	2.46		73.38	29.84
	2022-12-21 19:00:00	19.22	5.69	17.41	7.59		76.76	28.86
[2022-12-21 20:00:00	15.20	5.15	19.66	9.00		82.66	27.41
	2022-12-21 21:00:00	20,75	8.10	7,48	9,41		86.01	27.26
	2022-12-21 22:00:00	21,41	9.29	0.00	9.48		86.24	27.10
[2022-12-21 23:00:00	20.61	9.13	7.98	7.63		87.71	26.84
[2022-12-22 00:00:00	18.51	8.36	5.29	8.85		87.45	26.62
[2022-12-22 01:00:00	19.02	8.67	17.32	8.75		88.12	26.74
	2022-12-22 02:00:00	18.23	8.40	16.31	8.89	74.10	89.51	26.40
ASR2	2022-12-22 03:00:00	18,79	8.69	13.23	8.97		89.88	26,21
ASR4	2022-12-22 04:00:00	18.27	8.38	14.54	9.40		88.06	25.74
[2022-12-22 05:00:00	19.22	8.60	19.08	11.53		86.34	25.18
Í	2022-12-22 06:00:00	20.26	8.85	13.10	7.62		81.19	25.10
ĺ	2022-12-22 07:00:00	21.83	9.42	16.66	3.41		78.45	24.66
[2022-12-22 08:00:00	21.98	9.46	14.12	13.36		78.12	25.37
[2022-12-22 09:00:00	29.99	12.87	14.96	21.23		77.49	26.16
	2022-12-22 10:00:00	27:45	11.78	18.42	17.55		80.12	26.69
[2022-12-22 11:00:00	25.86	11.06	14.79	16.40		79.25	27,00
	2022-12-22 12:00:00	25.76	11.02	19.45	29.14		74.12	27.69
	2022-12-22 13:00:00	23.28	9.96	8.83	22.13		76.75	28.15
	2022-12-22 14:00:00	23.09	9.84	20.82	35.74		71.18	28.39
	2022-12-22 15:00:00	22.61	9.52	13.61	24.88		69.54	28.06
	TA Luft	-	+2	200	350	(e) (+
Hourty	EU	-	. 89	200	350	28 - C		*
Limit Values	WHO Ambient Air Quality Guideline Value		10	392	*	221	3	*
	Average	21.55	8.95	13.35	12.83	74.10	71.93	29.37
	TA Luft	50			125			
Daily	EU	50			125			
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40			5

Table 7 Measurement Results for Location 4

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	39

Document No

ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022

Rev. No / Date
Page No:

40

Table 8 Measurement Results for Location 5

Location				Resu (pg/s	Ambient Conditions			
	Sampling Date	PMa	PMax	NOL	so _t	TSP (24 Hours Average)	Humidity (%)	Temperature (*C)
	2022-12-22 17:00:00	31.10	14.86	0.00	0.00		82.29	23.92
	2022-12-22 18:00:00	14.91	5.50	0.00	0.00	2	89.61	27.72
	2022-12-22 19:00:00	13.19	5.85	0.00	0.00	8 8	93.50	26.76
	2022-12-22 20:00:00	9.00	5.03	0.00	0.00		97.96	25.98
[2022-12-22 21:00:00	6.58	3.33	0.00	0.00		96.78	26.40
	2022-12-22 22:00:00	6.75	2.38	0.00	0.00		93.89	27.35
[2022-12-22 23:00:00	5.78	1.99	0.00	0.00	1	94.53	27.40
	2022-12-23 00:00:00	4.27	1.42	0.00	0.00	i 1	95.37	27.31
	2022-12-23 01:00:00	7.03	2.37	0.00	0.00	1	93.30	27.47
[2022-12-23 02:00:00	5.48	1.49	0.00	0.00		92.14	27.41
[2022-12-23 03:00:00	9.53	3.52	0.00	0.00	53.16	92.44	27.37
ASR3	2022-12-23 04:00:00	9.14	3.41	0.00	0.00		92.80	27.31
ASR3	2022-12-23 05:00:00	11.10	4.49	0.00	0.00		93.62	27.32
[2022-12-23 06:00:00	12.54	6.05	0.00	0.00		94.99	26.29
	2022-12-23 07:00:00	10.66	6.38	0.00	0.00		99.20	25.64
[2022+12+23 08:00:00	2.89	2:25	0.00	0.00		98.94	25.69
[2022-12-23 09:00:00	4.26	2.46	20.71	0.00		98.73	26.54
	2022-12-23 10:00:00	8.52	2.56	0.00	0.00		92.46	28.11
[2022-12-23 11:00:00	13.63	3.99	0.00	0.00		89.12	29.01
	2022-12-23 12:00:00	13.27	3,29	0.00	0.00		87.89	29.58
[2022-12-23 13:00:00	20,68	5.51	0.00	0.00		83.49	30.54
	2022-12-23 14:00:00	15.68	6.21	0.00	0.00		90.19	27.33
[2022-12-23 15:00:00	16.77	5.44	0.00	0.00		88.52	28.92
	2022-12-23 16:00:00	21.12	6.89	0.00	0.00		86.31	29.36
	TA Luft	+		200	200		-	*
Hourty	EU			200	350		180	
Limit Values	WHO Ambient Air Quality Guideline Value	15		×	342		. •	
	Average	11.41	4.44	0.86	0.00	53.16	71.93	29.37
	TA Luft	50			125			
Daily	EU	.50	(et S		125		Humidity (%) 82.29 89.61 93.50 97.96 96.78 93.89 94.53 95.37 93.30 92.14 92.44 92.80 93.62 94.99 93.62 94.99 99.20 98.94 98.73 92.46 89.12 87.89 83.49 90.19 88.52 86.31 - -	
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40			8

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	41

Figure 6 Measurement Graphs for Location ASR3

Document No

ENVIRONMENTAL MONITORING REPORT - DECEMBER 2022

Rev. No / Date Page No:

42

00/21.01.2023

Table 9 Measurement Results for Location 6

Location				Ambient Conditions				
	Sampling Date	PMo	PMLs	NO	SO	TSP (24 Hours: Average)	Humidity (%)	Temperatur
	2022-12-22 17:00:00	24.59	9.32	0.00	0.00	CONTRACTOR STREET	75.59	26.81
	2022-12-22 18:00:00	23.59	8.82	0.00	0.00	8	73.95	26.79
	2022-12-22 19:00:00	25.33	9.64	0.00	0.00	3	73.65	26.68
	2022-12-22 20:00:00	28.01	10.81	0.00	0.00	3	74.82	26.79
	2022-12-22 21:00:00	28.51	11.36	0.00	0.00	0	76.74	26.44
	2022-12-22 22:00:00	30.19	11.91	0.00	0.00		76.09	26.69
	2022-12-22 23:00:00	26.70	10.63	0.00	0.00		75.79	26.22
	2022-12-23 00:00:00	27.48	10.96	0.00	0.00		75.53	26.20
	2022-12-23 01:00:00	27.81	12.93	0.00	0.00		84.07	24.31
	2022-12-23 02:00:00	23.51	.9.89	0.00	0.00	9	81.92	25.79
	2022-12-23 03:00:00	34.15	12.99	0.00	0.00	181.96	72.94	27.45
ASR5	2022-12-23 04:00:00	34.33	12,17	0.00	0.00		70.52	28.61
ASIG	2022-12-23 05:00:00	34.67	11.52	0.00	0.00		66,15	29.61
	2022-12-23 06:00:00	36.58	11.30	0.00	0.00		84.98	27.14
	2022-12-23 07:00:00	21.18	9.59	0.00	0.00		84.62	27.85
	2022-12-23 08:00:00	23.25	10.59	0.00	0.00		83.57	28.29
	2022-12-23 09:00:00	20.75	9.68	0.00	0.00		78.81	29.12
	2022-12-23 10:00:00	19.05	9.07	0.00	0.00		83.47	27.74
	2022-12-23 11:00:00	19.12	9.16	0.00	0.00		79.85	28.66
	2022-12-23 12:00:00	19.48	9.35	0.00	0.00		77.93	28.71
	2022-12-23 13:00:00	19.64	9.36	0.00	0.00		81.98	26.05
	2022-12-23 14:00:00	20.03	9,38	0.00	0.00		77.99	28.23
	2022-12-23 15:00:00	21.16	9.70	0.00	0.00		83.44	28.30
	2022-12-23 16:00:00	22.06	10.01	0.00	0.00		87.36	27.42
	TA Luft).e.		200	350	*	*	
Hourly	EU		1.00	200	350	+	*	
Limit Values	WHO Ambient Air Quality Guideline Value		*	×	342	*	*8	8
	Average	25,47	10.42	0.00	0.00	181.96	80.59	28.63
	TA Luft	50		2 or 3	125	e ?		
Daily	EU	50		1.5	125			1
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40	- E	÷.	8

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	43

Figure 7 Measurement Graphs for Location ASR2

Document No

REPORT - DECEMBER 2022

Page No:

00/21.01.2023 44

Table 10 Measurement Results for Location 7

Location	Sampling Date			R	Ambient Conditions			
		PMar	PML	NO	SO	TSP (24 Hours Average)	Humidity (%)	Temperature (°C)
	2022-12-22 17:00:00	32.21	13.60	0.00	0.00		71.70	28.26
	2022-12-22 18:00:00	29.98	12.57	0.00	0.00		72.83	28.23
	2022-12-22 19:00:00	27.57	11.55	0.00	0.00		73.15	28.10
	2022-12-22 20:00:00	24.23	10.12	0.00	0.00		75.16	27.75
	2022-12-22 21:00:00	24.33	10.15	0.00	0.00		78.99	26.79
	2022-12-22 22:00:00	24.40	10.30	0.00	0.00		80.33	26.43
	2022-12-22 23:00:00	21.65	9.34	0.00	0.00		81.53	25.97
	2022-12-23 00:00:00	21.45	9.45	0.00	0.00		82.60	26.03
	2022-12-23 01:00:00	19.28	8.68	0.00	0.00		82.45	26.03
	2022-12-23 02:00:00	19.74	8.99	0.00	0.00		76.51	25.56
	2022-12-23 03:00:00	18.93	8.73	0.00	0.00	91.96	77.65	25.50
	2022-12-23 04:00:00	18.19	8.46	0.00	0.00		73.81	25.54
AQ4	2022-12-23 05:00:00	19.63	8.96	0.00	0.00		76.16	24.87
	2022-12-23 06:00:00	18.69	8.33	0.00	0.00		69.27	24.22
	2022-12-23 07:00:00	19.78	8.55	0.00	0.00		73.75	25.18
	2022-12-23 08:00:00	21.33	9.12	0.00	0.00		73.55	26.39
	2022-12-23 09:00:00	21.63	9.20	0.00	0.00		75.13	26.17
	2022-12-23 10:00:00	29.53	12.58	0.00	0.00		84.55	27.32
	2022-12-23 11:00:00	28.31	12.04	0.00	0.00		81.92	27.70
	2022-12-23 12:00:00	25.13	10.66	0.00	0.00		85.06	27.13
	2022-12-23 13:00:00	25.24	10.69	0.00	0,00		80.56	27.68
	2022-12-23 14:00:00	24.55	10.41	0.00	0,00		72.48	28.82
	2022-12-23 15:00:00	23.94	10.09	0.00	0.00		72.52	28.45
	2022-12-23 16:00:00	23.48	9.77	0.00	0.00		71.14	28.59
	TA Luft	*		200	350			
Hourly	EU		(*)	200	350			0.00
Limit Values	WHO Ambient Air Quality Guideline Value		1.002				05	200
	Average	23.47	10.10	0.00	0.00	91.96	81.17	27.66
	TA Luft	50			125	2		
Daily	EU	50		1 - 2	125	6	Humidity (%) 71.70 72.83 73.15 75.16 78.99 80.33 81.53 82.60 82.45 76.51 77.65 73.81 76.16 69.27 73.75 73.75 73.75 73.75 73.75 73.55 75.13 84.55 81.92 85.06 80.56 72.48 72.52 71.14 -	
Limit Values	WHO Ambient Air Quality Guideline Value	45	15	25	40			

Document No	MDV-AAK-CEMPX-XX- RP-XXX-0002-000
Rev. No / Date	00/21.01.2023
Page No:	45

Figure 8 Measurement Graphs for Location AQ4

Page No:

46

6. ASSESSMENT

The air quality measurement study was carried out with the aim of determining the air pollutants on ambient air quality. Results were assessed according to the TA LUFT, EU Council Directive 2008/50/EC and WHO limit values and this report was prepared. According to air quality measurement studies, background air quality values are comply with air quality standards.

Document No

Rev. No / Date

MDV-AAK-CEMPX-XX-RP-XXX-0002-000 00/21.01.2023 47 Page No:

ANNEX 2: NOISE LEVEL HOURLY RECORDS

	Station 1			ST 2		ST3		ST4	ST 5		
	DbA Date time		DbA Date/time		DbA	Date time	DbA Date time		DbA	Date Time	
	53.7	12/27/21:19	55	12/27/20:52	54.8	12/28/10:40	52.9	12/28/10:59	51.2	12/28/10:20	
	51.3	12/27/22:18	47.6	12/27/21:51	52	12/28/11:40	40.9	12/28/11:59	49.3	12/28/11:20	
	49.7	12/27/23:18	51.6	12/27/22:50	53.5	12/28/12:39	60.6	12/28/12:58	54.8	12/28/12:21	
	50.9	12/28/0:17	48.7	12/27/23:50	52.5	12/28/13:39	54.4	12/28/13:58	55.2	12/28/13:21	
	50.2	12/28/1:16	53.2	12/28/0:59	54.4	12/28/14:38	57.4	12/28/14:57	60.3	12/28/14:20	
	49.9	12/28/2:16	48.1	12/28/1:58	51.8	12/28/15:38	65.9	12/28/15:57	52.5	12/28/15:20	
	49.9	12/28/3:15	48	12/28/2:57	52.4	12/28/16:38	58.1	12/28/16:57	49.7	12/28/16:19	
	49.5	12/28/4:14	52.4	12/28/3:57	55.3	12/28/17:37	55.3	12/28/17:56	43.2	12/28/17:19	
	45	12/28/5:13	51.2	12/28/4:56	57.2	12/28/18:37	52.3	12/28/18:56	52.1	12/28/18:18	
	50.2	12/28/6:13	56.1	12/28/5:55	56	12/28/19:36	42.2	12/28/19:55	40.3	12/28/19:17	
	60.1	12/28/7:12	57.7	12/28/6:55	58.8	12/28/20:36	44.8	12/28/20:55	41.8	12/28/20:17	
	58.2	12/28/8:11	50.1	12/28/7:54	58.1	12/28/21:35	40.2	12/28/21:54	39.1	12/28/21:17	
	62.8	12/28/9:11	63.1	12/28/8:53	57.3	12/28/22:35	39.8	12/28/22:54	34.2	12/28/22:16	
	56.1	12/28/10:20	46.6	12/28/9:52	56.3	12/28/23:35	41.4	12/28/23:54	33.8	12/28/23:16	
	58.3	12/28/11:13	49.5	12/28/10:52	56.9	12/29/0:34	40.7	12/29/0:53	40.1	12/29/0:15	
	61.8	12/28/12:12	50.3	12/28/11:55	55.2	12/29/1:34	41.6	12/29/1:53	35.2	12/29/1:15	
	65.5	12/28/13:11	54.3	12/28/12:54	55.4	12/29/2:33	41.5	12/29/2:52	33.6	12/29/2:14	
	59.9	12/28/14:10	49.4	12/28/13:52	55.6	12/29/3:33	39.4	12/29/3:52	30.2	12/29/3:14	
	61	12/28/15:09	65.5	12/28/14:51	55.4	12/29/4:33	46.8	12/29/4:52	31.1	12/29/4:14	
	58.3	12/28/16:08	52.6	12/28/15:50	57.6	12/29/5:32	50.8	12/29/5:51	35.3	12/29/5:13	
	57.5	12/28/17:07	54.2	12/28/16:59	56.6	12/29/6:32	42.2	12/29/6:51	40.4	12/29/6:13	
	55.3	12/28/18:15	60	12/28/17:58	56.7	12/29/7:31	47.1	12/29/7:50	45.8	12/29/7:12	
	53.6	12/28/19:14	53.7	12/28/18:47	56.3	12/29/8:31	49.7	12/29/8:50	50.6	12/29/8:12	
	51.2	12/28/20:14	56.4	12/28/19:36	59.3	12/29/9:31	54.4	12/29/9:59	47.3	12/29/9:11	
Max	65.5		65.5		59.3		65.9		60.3		
Min	45		46.6		51.8		39.4		30.2		
Avr	54.996		53.138		55.642		48.350		43.629		

ANNEX 3. MARINE ECOLOGY SURVEY; FISH CENSUS DATA

Fish Census data M8

Site	Family	Scientific.Name	Abundance
M8	Acanthuridae	Acanthurus leucosternon	Rare
M8	Acanthuridae	Acanthurus nigricauda	Rare
M8	Acanthuridae	Ctenochaetus striatus	Rare
M8	Acanthuridae	Naso brevirostris	Rare
M8	Balistidae	Balistapus undulatus	Rare
M8	Balistidae	Odonus niger	Rare
M8	Balistidae	Odonus niger	Common
M8	Balistidae	Sufflamen.bursa	Rare
M8	Chaetodontidae	Chaetodon collare	Rare
M8	Chaetodontidae	Chaetodon falcula	Rare
M8	Chaetodontidae	Chaetodon guttatissimus	Rare
M8	Chaetodontidae	Chaetodon kleinii	Rare
M8	Chaetodontidae	Forcipiger flavissimus	Rare
M8	Chaetodontidae	Heniochus diphreutes	Rare
M8	Cirrhitidae	Paracirrhites arcatus	Rare
M8	Cirrhitidae	Paracirrhites forsteri	Rare
M8	Labridae	Bodianus diana	Rare
M8	Labridae	Halichoeres cosmetus	Rare
M8	Labridae	Halichoeres hortulanus	Rare
M8	Labridae	Labroides bicolor	Rare
M8	Labridae	Pseudocheilinus hexataenia	Rare
		Thalassoma	
M8	Labridae	amblycephalum	Rare
M8	Pomacanthidae	Centropyge multispinis	Rare
M8	Pomacentridae	Chromis dimidiata	Rare
M8	Pomacentridae	Chromis dimidiata	Common
M8	Pomacentridae	Chromis weberi	Rare
M8	Pomacentridae	Pomacentrus caeruleus	Rare
M8	Pomacentridae	Pomacentrus philippinus	Common
M8	Scaridae	Chlorurus sordidus	Rare
M8	Scaridae	Scarus tricolor	Rare
		Anyperodon	
M8	Serranidae	leucogrammicus	Rare
M8	Serranidae	Cephalopholis argus	Rare
M8	Serranidae	Cephalopholis leopardus	Rare
M8	Serranidae	Epinephelus spilotoceps	Rare
M8	Serranidae	Pseudanthias evansi	Abundant
M8	Serranidae	Pseudanthias squamipinnis	Rare

Page No:

49

MDV-AAK-CEMPX-XX-RP-XXX-0002-000

00/21.01.2023

Fish Census data M9

Site	Family	Scientific.Name	Abundance
M9	Acanthuridae	Acanthurus binotatus	Rare
M9	Acanthuridae	Ctenochaetus striatus	Rare
M9	Acanthuridae	Ctenochaetus truncatus	Rare
M9	Acanthuridae	Naso brevirostris	Rare
M9	Acanthuridae	zebrasoma desjardinii	Rare
M9	Acanthuridae	Zebrasoma scopas	Rare
M9	Balistidae	Balistapus undulatus	Rare
M9	Balistidae	Melichthys indicus	Rare
M9	Balistidae	Odonus niger	Rare
M9	Balistidae	Odonus niger	Common
M9	Balistidae	Sufflamen.bursa	Rare
M9	Chaetodontidae	Chaetodon guttatissimus	Rare
M9	Chaetodontidae	Chaetodon kleinii	Rare
		Chaetodon	
M9	Chaetodontidae	madagaskariensis	Rare
M9	Chaetodontidae	Forcipiger flavissimus	Rare
M9	Chaetodontidae	Hemitaurichthys zoster	Rare
M9	Labridae	Bodianus axillaris	Rare
M9	Labridae	Halichoeres cosmetus	Rare
M9	Labridae	Halichoeres hortulanus	Rare
M9	Labridae	Labroides bicolor	Rare
M9	Labridae	Pseudocheilinus hexataenia	Rare
M9	Labridae	Thalassoma amblycephalum	Rare
M9	Lutjanidae	Pterocaesio.tile	Common
M9	Nemipteridae	Scolopsis bilineata	Rare
M9	Pomacentridae	Chromis dimidiata	Common
M9	Pomacentridae	Chromis dimidiata	Abundant
M9	Pomacentridae	Chromis opercularis	Rare
		Plectroglyphidodon	
M9	Pomacentridae	lacrymatus	Rare
M9	Pomacentridae	Pomacentrus chrysurus	Rare
M9	Pomacentridae	Pomacentrus nagasakiensis	Rare
M9	Pomacentridae	Pomacentrus philippinus	Rare
M9	Pomacentridae	Pomacentrus philippinus	Common
M9	Scaridae	Hipposcarus harid	Rare
M9	Scaridae	Scarus tricolor	Rare